International Journal of Biometeorology

, Volume 59, Issue 8, pp 1127–1132 | Cite as

Do variations in leaf phenology affect radial growth variations in Fagus sylvatica?

  • Katarina ČufarEmail author
  • Martin De Luis
  • Peter Prislan
  • Jožica Gričar
  • Zalika Črepinšek
  • Maks Merela
  • Lučka Kajfež-Bogataj
Short Communication


We used a dendrochronological and leaf phenology network of European beech (Fagus sylvatica) in Slovenia, a transitional area between Mediterranean, Alpine and continental climatic regimes, for the period 1955–2007 to test whether year to year variations in leaf unfolding and canopy duration (i.e. time between leaf unfolding and colouring) influence radial growth (annual xylem production and tree ring widths) and if such influences are more pronounced at higher altitudes. We showed that variability in leaf phenology has no significant effect on variations in radial growth. The results are consistent in the entire region, irrespective of the climatic regime or altitude, although previous studies have shown that leaf phenology and tree ring variation depend on altitude. The lack of relationship between year to year variability in leaf phenology and radial growth may suggest that earlier leaf unfolding—as observed in a previous study—probably does not cause increased tree growth rates in beech in Slovenia.


Climate change Leaf phenology Tree rings European beech 



Climatic and phenological data were provided by the Environmental Agency of the Republic of Slovenia (ARSO) within the Ministry of the Environment and Spatial Planning. The work was supported by the Slovenian Research Agency (ARRS), programmes P4-0015 and P4-0085 and by the Spanish Ministry of Education and Science, project ELENA (CGL2012-31668). The cooperation among the international partners was supported by the COST Action FP1106, STReESS. We thank Martin Cregeen for language editing.


  1. Caffarra A, Donnelly A (2011) The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int J Biometeorol 55(5):711–721. doi: 10.1007/s00484-010-0386-1 CrossRefGoogle Scholar
  2. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. The Holocene 7(3):361–370. doi: 10.1177/095968369700700314 CrossRefGoogle Scholar
  3. Čufar K, De Luis M, Berdajs E, Prislan P (2008a) Main patterns of variability in beech tree-ring chronologies from different sites in Slovenia and their relation to climate. Zbornik Gozdarstva In Lesarstva 87:123–134Google Scholar
  4. Čufar K, Prislan P, De Luis M, Gričar J (2008b) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22:749–758. doi: 10.1007/s00468-008-0235-6 CrossRefGoogle Scholar
  5. Čufar K, De Luis M, Saz M, Črepinšek Z, Kajfež-Bogataj L (2012) Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees 26(4):1091–1100. doi: 10.1007/s00468-012-0686-7
  6. Davi H, Dufrêne E, Francois C, Le Maire G, Loustau D, Bosc A, Rambal S, Granier A, Moors E (2006) Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems. Agric For Meteorol 141(1):35–56. doi: 10.1016/j.agrformet.2006.09.003 CrossRefGoogle Scholar
  7. Davi H, Gillmann M, Ibanez T, Cailleret M, Bontemps A, Fady B, Lefèvre F (2011) Diversity of leaf unfolding dynamics among tree species: new insights from a study along an altitudinal gradient. Agric For Meteorol 151(12):1504–1513. doi: 10.1016/j.agrformet.2011.06.008 CrossRefGoogle Scholar
  8. De Luis M, Čufar K, Saz M, Longares L, Ceglar A, Kajfež-Bogataj L (2012) Trends in seasonal precipitation and temperature in Slovenia during 1951–2007. Reg Environ Change:1-10. doi: 10.1007/s10113-012-0365-7
  9. Di Filippo A, Biondi F, Čufar K, De Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34(11):1873–1892. doi: 10.1111/j.1365-2699.2007.01747.x CrossRefGoogle Scholar
  10. Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manag 173(1–3):63–78. doi: 10.1016/S0378-1127(01)00816-7 CrossRefGoogle Scholar
  11. Dittmar C, Elling W (2006) Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. Eur J For Res 123:181–188. doi: 10.1007/s10342-005-0099-x CrossRefGoogle Scholar
  12. Fischer S, Neuwirth B (2013) Vulnerability of trees to climate events in temperate forests of West Germany. ISRN For 2013:15. doi: 10.1155/2013/201360 Google Scholar
  13. Hájková L, Nekovár J, Richterová D (2010) Assessment of vegetative phenological phases of European beech (Fagus sylvatica L.) in relation to effective temperature during period of 1992–2008 in Czechia. Folia Oecologica 37 (2):125-135. doi:
  14. Holmes RL (1994) Dendrochronology program library user’s manual. University of Arizona, Tucson, ArizonaGoogle Scholar
  15. Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. Compt Rendus Geosci 340(9–10):621–628. doi: 10.1016/j.crte.2008.07.002 CrossRefGoogle Scholar
  16. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12(11):2163–2174. doi: 10.1111/j.1365-2486.2006.01250.x
  17. Körner C, Basler D (2010) Phenology under global warming. Science 327(5972):1461–1462. doi: 10.1126/science.1186473 CrossRefGoogle Scholar
  18. Limousin J-M, Rambal S, Ourcival J-M, Rodríguez-Calcerrada J, Pérez-Ramos I, Rodríguez-Cortina R, Misson L, Joffre R (2012) Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 169(2):565–577. doi: 10.1007/s00442-011-2221-8 CrossRefGoogle Scholar
  19. Liu B, Li Y, Eckstein D, Zhu L, Dawadi B, Liang E (2013) Has an extending growing season any effect on the radial growth of Smith fir at the timberline on the southeastern Tibetan Plateau? Trees 27(2):441–446. doi: 10.1007/s00468-012-0819-z CrossRefGoogle Scholar
  20. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli O, Peñuelas J, Pirinen P, RemiŠOvÁ V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12(10):1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x
  21. Menzel A, Seifert H, Estrella N (2011) Effects of recent warm and cold spells on European plant phenology. Int J Biometeorol 55(6):921–932. doi: 10.1007/s00484-011-0466-x CrossRefGoogle Scholar
  22. Peñuelas J, Filella I (2001) Responses to a warming world. Science 294(5543):793–795. doi: 10.1126/science.1066860 CrossRefGoogle Scholar
  23. Pluess AR, Weber P (2012) Drought-adaptation potential in Fagus sylvatica: linking moisture availability with genetic diversity and dendrochronology. PLoS ONE 7(3):e33636. doi: 10.1371/journal.pone.0033636 CrossRefGoogle Scholar
  24. Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191(4):926–941. doi: 10.1111/j.1469-8137.2011.03803.x CrossRefGoogle Scholar
  25. Prislan P, Gričar J, De Luis M, Smith KT, Cufar K (2013) Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agric For Meteorol 180(0):142–151. doi: 10.1016/j.agrformet.2013.06.001 CrossRefGoogle Scholar
  26. Reyer CPO, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A, de Lorenzi F, Dury M, Gloning P, Abou Jaoudé R, Klein T, Kuster TM, Martins M, Niedrist G, Riccardi M, Wohlfahrt G, de Angelis P, de Dato G, François L, Menzel A, Pereira M (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob Chang Biol 19(1):75–89. doi: 10.1111/gcb.12023 CrossRefGoogle Scholar
  27. Richardson AD, Andy Black T, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, William Munger J, Moors E, Piao S, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A (2010) Influence of spring and autumn phenological transitions on forest ecosystem productivity. Phil Trans R Soc B Biol Sci 365(1555):3227–3246. doi: 10.1098/rstb.2010.0102 CrossRefGoogle Scholar
  28. Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169(0):156–173. doi: 10.1016/j.agrformet.2012.09.012 CrossRefGoogle Scholar
  29. Tegel W, Seim A, Hakelberg D, Hoffmann S, Panev M, Westphal T, Büntgen U (2014) A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur J For Res 133(1):61–71. doi: 10.1007/s10342-013-0737-7
  30. Vitasse Y, Delzon S, Dufrêne E, Pontailler J-Y, Louvet J-M, Kremer A, Michalet R (2009) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149(5):735–744. doi: 10.1016/j.agrformet.2008.10.019 CrossRefGoogle Scholar
  31. Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Funct Ecol 24(6):1211–1218. doi: 10.1111/j.1365-2435.2010.01748.x CrossRefGoogle Scholar
  32. Vitasse Y, François C, Delpierre N, Dufrêne E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151(7):969–980. doi: 10.1016/j.agrformet.2011.03.003 CrossRefGoogle Scholar
  33. Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J For Res 132(1):1–8. doi: 10.1007/s10342-012-0661-2 CrossRefGoogle Scholar
  34. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar

Copyright information

© ISB 2014

Authors and Affiliations

  • Katarina Čufar
    • 1
    Email author
  • Martin De Luis
    • 2
  • Peter Prislan
    • 1
    • 3
  • Jožica Gričar
    • 3
  • Zalika Črepinšek
    • 4
  • Maks Merela
    • 1
  • Lučka Kajfež-Bogataj
    • 4
  1. 1.Biotechnical Faculty, Department of Wood Science and TechnologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Dept. Geografía y O.T.University of ZaragozaZaragozaSpain
  3. 3.Slovenian Forestry InstituteLjubljanaSlovenia
  4. 4.Biotechnical Faculty, Agronomy DepartmentUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations