International Journal of Biometeorology

, Volume 59, Issue 3, pp 267–283

Dengue transmission based on urban environmental gradients in different cities of Pakistan

Original Paper

Abstract

This study focuses on the dengue transmission in different regions of Pakistan. For this purpose, the data of dengue cases for 2009–2012 from four different cities (Rawalpindi, Islamabad, Lahore, and Karachi) of the country is collected, evaluated, and compiled. To identify the reasons and regions of higher risk of Dengue transmission, land use classification, analysis of climate covariates and drainage patterns was done. Analysis involves processing of SPOT 5 10 m, Landsat TM 30 m data sets, and SRTM 90 m digital elevation models by using remote sensing and GIS techniques. The results are based on the change in urbanization and population density, analysis of temperature, rainfall, and wind speed; calculation of drainage patterns including stream features, flow accumulation, and drainage density of the study areas. Results suggest that the low elevation areas with calm winds and minimum temperatures higher than the normal, rapid increase in unplanned urbanization, low flow accumulation, and higher drainage density areas favor the dengue transmission.

Keywords

Dengue Urbanization Climatic variables Land use classification Drainage patterns 

References

  1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–7CrossRefGoogle Scholar
  2. Chan YC, Salahuddin NI, Khan J, Tan HC, Seah CL, Li J (1994) Dengue hemorrhagic fever outbreak in Karachi, Pakistan. Trans R Soc Trop Med Hyg 89:619–620CrossRefGoogle Scholar
  3. Cifuentes E (2007) Factores ambientales que determinan la aparición de brotes y la persistencia del dengue en Morelos. Salud Publica Mex 49:114–116Google Scholar
  4. Climate of Pakistan (2011) Report by National drought monitoring center. Pakistan meteorological departmentGoogle Scholar
  5. Edillo FE, Touré YT, Lanzaro GC, Dolo G, Taylor CE (2004) Survivorship and distribution of immature Anopheles gambiaes.l. (Diptera: Culicidae) in Banambani Village, Mali. J Entomol 41:333–339CrossRefGoogle Scholar
  6. Escobar MJ, Gómez DH (2003) Determinants of dengue transmission in Veracruz: an ecological approach to its control. Salud Publica Mex 45(1):43–53CrossRefGoogle Scholar
  7. Espinoza GF, Suárez HCM, Cárdenas CR (2001) Factors that modify the larval indices of Aedes aegypti in Colima. Mex Pan Am J Public Health 10(1):6–12Google Scholar
  8. Favier C, Degallier N, Dubois MA (2005) Dengue epidemic modelling: stakes and pitfalls. Asia Pac Biotechnol News 9(22):1191–1194Google Scholar
  9. Githeko AK, Ototo EN, Guiyun Y (2012) Progress towards understanding the ecology and epidemiology of malaria in the western Kenya highlands: opportunities and challenges for control under climate change risk. Acta Trop 121:19–25CrossRefGoogle Scholar
  10. Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10(2):100–103CrossRefGoogle Scholar
  11. Guthmann JP, Hall AJ, Jaffar S, Palacios A, Lines J, Llanos CA (2001) Environmental risk factors for clinical malaria: a case-control study in the Grau Region of Peru. Trans R Soc Trop Med Hyg 95:1–7CrossRefGoogle Scholar
  12. Guzmán MG, Kourí G (2002) Dengue: an update. Lancet Infect Dis 2(1):33–42CrossRefGoogle Scholar
  13. Halstead SB (2008) Dengue virus-mosquito interactions. Rev Entomol 53:273–291CrossRefGoogle Scholar
  14. Hopp MJ, Foley JA (2001) Global-scale relationships between climate and the dengue fever vector, Aedes aegypti. Climate 48(2):441–463Google Scholar
  15. Hopp MJ, Foley JA (2003) Worldwide fluctuations in dengue fever cases related to climate variability. Clim Res 25(1):85–94CrossRefGoogle Scholar
  16. Humayoun MA, Waseem T, Jawa AA, Hashmi MS, Akram J (2010) Multiple dengue serotypes and high frequency of dengue hemorrhagic fever at two tertiary care hospitals in Lahore during the 2008 dengue virus outbreak in Punjab, Pakistan. Int J Infect Dis 14(3):54–59CrossRefGoogle Scholar
  17. Ibáñez BS, Gómez DH (1995) Vectors of dengue in Mexico: a critical review. Salud Publica Mex 37:53–63Google Scholar
  18. Iqbal MS, Mustafa KP, Van SW, Raza SQ, Khan KSA (2007) Environmental geology of Islamabad-Rawalpindi area, Northern Pakistan. Chapter G. Regional studies of potwar plateau area Northern Pakistan. US Geological Survey, RestonGoogle Scholar
  19. Jepson WF, Moutia A, Courtois C (1947) The malaria problem in Mauritius: the binomics of Mauritian anophelines. Bull Entomol Res 38:177–208CrossRefGoogle Scholar
  20. Machado AE (2012) Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling. Appl Geogr 33:82–93CrossRefGoogle Scholar
  21. Moore C, Cline B, Ruiz TE, Lee D, Romney JH, Rivera CE (1978) Aedes aegypti in Puerto Rico: environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg 27(6):1225–1231Google Scholar
  22. Narro RJ, Gómez DH (1995) Dengue in Mexico: a priority problem of public health. Salud Publica Mex 37:12–20Google Scholar
  23. Navarrete J, Vázquez JL, Vázquez JA, Gómez DH (2002) Epidemiología del dengue y dengue hemorragico en el Instituto Mexicano del Seguro Social (IMSS). Rev Peru Epidemiología 10(1):1–12Google Scholar
  24. Oesterholt MJAM, Bousema JT, Mwerinde OK, Harris C, Lushino P, Masokoto A, Mwerinde H, Mosha FW, Drakeley CJ (2006) Spatial and temporal variation in malaria transmission in a low endemicity area in northern Tanzania. Malar J 5:98CrossRefGoogle Scholar
  25. Olson SH, Gangnon R, Elguero E, Durieux L, Guégan JF, Foley JA, Patz JA (2009) Links between climate, malaria and wetlands in the Amazon Basin. Emerg Infect Dis 15:659–662CrossRefGoogle Scholar
  26. Paul RE, Patel AY, Mirza S, Fisher-Hoch SP, Luby SP (1998) Expansion of epidemic dengue viral infections to Pakistan. Int J Infect Dis 2:197–201CrossRefGoogle Scholar
  27. Raheel U, Faheem M, Riaz MN, Kanwal N, Javed F, Zaidi NS, Qadri I (2011) Dengue fever in the Indian Subcontinent: an overview. J Infect Dev Count 5(4):239–47Google Scholar
  28. Rasheed SB, Butlin RK, Boots M (2013) A review of dengue as an emerging disease in Pakistan. Publ Health 127:11–17CrossRefGoogle Scholar
  29. Rigau PJG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vorndam VA (1998) Dengue and dengue haemorrhagic fever. Lancet 352(9132):971–977CrossRefGoogle Scholar
  30. Slosek J (1986) Aedes aegypti mosquitoes in the Americas: a review of their interactions with the human population. Soc Sci Med 23(3):249–257CrossRefGoogle Scholar
  31. Smith MW, Macklin MG, Thomas CJ (2013) Hydrological and geomorphological controls of malaria transmission. Earth Sci Rev 116:109–127CrossRefGoogle Scholar
  32. van der Hoek W, Konradsen F, Amerasinghe PH, Perera D, Piyaratne MK, Amerasinghe FP (2003) Towards a risk map of malaria for Sri Lanka: the importance of house location relative to vector breeding sites. Int J Epidemiol 32:280–285CrossRefGoogle Scholar
  33. WHO (2009) Epidemiology, burden of disease and transmission. In Dengue: Guidelines for diagnosis, treatment, prevention and control: World Health Organization Geneva 1–21Google Scholar
  34. Wilson ME, Chen LH (2002) Dengue in the Americas. Dengue Bull World Health Org (South-East Asia West Pac Reg) 26:44–61Google Scholar

Copyright information

© ISB 2014

Authors and Affiliations

  1. 1.Department of Meteorology, COMSATS Institute of Information Technology IslamabadIslamabadPakistan

Personalised recommendations