International Journal of Biometeorology

, Volume 59, Issue 1, pp 89–97 | Cite as

Tree growth response to ENSO in Durango, Mexico

  • Marin Pompa-García
  • Liliana Miranda-Aragón
  • Carlos Arturo Aguirre-Salado
Original Paper


The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth’s climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950–2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI (p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).


Radial growth Tree-rings Pinus cooperi Dendrochronology MEI Niño3 Elevation gradients 


  1. Adams HD, Kolb TE (2005) Tree growth response to drought and temperature in a mountain landscape in northern Arizona, USA. J Biogeogr 32:1629–1640. doi:10.1111/j.1365-2699.2005.01292.x CrossRefGoogle Scholar
  2. Bannayan M, Lotfabadi S, Sanjani S, Mohammadian A, Agaalikhani M (2011) Effects of precipitation and temperature on cereal yield variability in northeast of Iran. Int J Biometeorol 55:387–40. doi:10.1007/s00484-010-0348-7 CrossRefGoogle Scholar
  3. Beniston M (2002) Climate modeling at various spatial and temporal scales: where can dendrochronology help? Dendrochronologia 20:117–131CrossRefGoogle Scholar
  4. Bickford IN, Fulé ZP, Kolb TE (2011) Growth sensitivity to drought of co-occurring Pinus spp. along an elevation gradient in northern Mexico. West N Am Nat 71(3):338–348CrossRefGoogle Scholar
  5. Biondi F, Waikul J (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comp Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004 CrossRefGoogle Scholar
  6. Brienen RJW, Lebrija-Trejos E, Zuidema PA, Martínez-Ramos M (2010) Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob Chang Biol 16:2001–2012CrossRefGoogle Scholar
  7. Cerano-Paredes J, Villanueva-Diáz J, Valdez-Cepeda RD, Arreola-Avila JG, Constante-García V (2011) Effects of the El Niño Southern Oscillation on precipitation in the upper Nazas river watershed. Rev Chapingo XVII:207–215Google Scholar
  8. Chen P, Welsh C, Hamann A (2010) Geographic variation in growth response of Douglas-fir to inter-annual climate variability and projected climate change. Glob Chang Biol 16:3374–3385. doi:10.1111/j.1365-2486.2010.02166.x CrossRefGoogle Scholar
  9. Cleaveland MK, Stahle DW, Therrell MD, Villanueva-Díaz J, Buns BT (2003) Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Clim Chang 59:369–388CrossRefGoogle Scholar
  10. Constante-García V, Villanueva-Díaz J, Cerano-Paredes J, Cornejo-Oviedo EH, Valencia-Manzo S (2009) Dendrochronology of Pinus cembroides Zucc. and rainfall seasonal reconstruction in Coahuila Southeastern. Rev Cien For en Méx 34:17–38Google Scholar
  11. Cook, E.R., Holmes, R.L., 1996. Guide for computer program ARSTAN. The International Tree-Ring Data Bank Program Library Version 2.0 User’s Manual (ed. by H.D. Grissino-Mayer, R.L. Holmes and H.C. Fritts), pp. 75-87. Laboratory of Tree-Ring Research, University of Arizona, Tucson.Google Scholar
  12. Cruz CF, de los Santos PHM, Valdez LJR (2008) Compatible taper-volume system for Pinus cooperi blanco in Durango, México. Agrociencia 42(4):473–485Google Scholar
  13. CNA (Comisión Nacional del Agua) (2012). Datos climáticos de estaciones meteorológicas de Durango: El Salto y Otinapa. (Climatic weather of Durango State, el Salto). <> (accessed February 8, 2013)
  14. Díaz SC, Therrell MT, Stahle DW, Cleaveland MK (2002) Chihuahua winter-spring precipitation reconstructed from tree-rings. Clim Res 22:237–244CrossRefGoogle Scholar
  15. Fritts HC (2001) Tree rings and climate. Blackburn Press, Caldwell, p 567Google Scholar
  16. Griffin D, Meko DM, Touchan R, Leavitt SW, Woodhouse CA (2011) Latewood chronology development for summer-moisture reconstruction in the U.S. Southwest. Tree-Ring Res 67:87–101. doi:10.3959/2011-4.1 CrossRefGoogle Scholar
  17. Griffin D, Woodhouse CA, Meko DM, Stahle DW, Faulstich HL, Carrillo C, Touchan R, Castro CL, Leavitt SW (2013) North American monsoon precipitation reconstructed from tree-ring latewood. Geophys Res Lett 40:954–958. doi:10.1002/grl.50184 CrossRefGoogle Scholar
  18. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  19. Lebourgeois F, Mérian P, Courdier F, Ladier J, Dreyfus P (2012) Instability of climate signal in tree-ring width in Mediterranean mountains: a multi-species analysis. Trees Struct Funct 26:715–729. doi:10.1007/s00468-011-0638-7 CrossRefGoogle Scholar
  20. Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771CrossRefGoogle Scholar
  21. Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Chang Biol 13:2089–2109CrossRefGoogle Scholar
  22. Lo YH, Blanco JA, Seely B, Welham C, Kimmins JP (2010) Relationships between climate and tree radial growth in interior British Columbia, Canada. For Ecol Manag 259:932–942. doi:10.1016/j.foreco.2009.11.033 CrossRefGoogle Scholar
  23. Meko DM, Touchan R, Anchukaitis KA (2011) Seascorr: a MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series. Comput Geosci 37:1234–1241. doi:10.1016/j.cageo.2011.01.013 CrossRefGoogle Scholar
  24. Meko DM, Touchan R, Villanueva-Díaz J, Griffin D, Woodhouse CA, Castro CL, Carillo C, Leavitt SW (2013) Sierra San Pedro Mártir, Baja California, cool-season precipitation reconstructed from earlywood width of Abies concolor tree rings. J Geophys Res Biogeosci 118:1660–1673. doi:10.1002/2013JG002408 CrossRefGoogle Scholar
  25. Méndez M, Magaña V (2010) Regional aspects of prolonged meteorological droughts over Mexico and Central America. J Clim 23(5):1175–1188CrossRefGoogle Scholar
  26. Mérian P, Pierrat J, Lebourgeois F (2013) Effect of sampling effort on the regional chronology statistics and climate–growth relationships estimation. Dendrochronologia 31:58–67. doi:10.1016/j.dendro.2012.07.001 CrossRefGoogle Scholar
  27. Pohl K, Therrell MD, Santiago BJ, Ayotte N, Bernal SJ, Cabrera HJ, Castro DS, Elvir JA, Gonzales EM, Opland D, Park J, Pederson G, Vazguez SL, Villanueva-Díaz J, Cornejo OE, Stahle DW (2003) A cool-season precipitation reconstruction for Saltillo, Mexico. Tree-Ring Res 59(1):11–19Google Scholar
  28. Pompa-García M, Jurado E (2013) Seasonal precipitation reconstruction and teleconnections with ENSO based on tree ring analysis of Pinus cooperi. Theor Appl Climatol. doi:10.1007/s00704-013-1018-6 Google Scholar
  29. Rozas V, García-Gonzalez I (2012) Non-stationary influence of El Niño-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula. Int J Biometeorol 56:787–800CrossRefGoogle Scholar
  30. SAS (Statistical Analysis System) (2004) SAS user’s guide statistics. Release 9.1. SAS Institute Inc, Cary, North Carolina, USA, p 2170Google Scholar
  31. Seager R, Ting M, Davis M, Cane M, Naik N, Nakamura J, Li C, Cook E, Stahle D (2009) Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmosfera 22:1–31Google Scholar
  32. Senkbeil JC, Rodgers JC, Sheridan SC (2007) The sensitivity of tree growth to air mass variability and the Pacific Decadal Oscillation in coastal Alabama. Int J Biometeorol 51:483–491. doi:10.1007/s00484-007-0087-6 CrossRefGoogle Scholar
  33. Stahle DW, Burnette DJ, Villanueva-Diaz J, Heim RR Jr, Fye FK, Cerano-Paredes J, Acuna-Soto R, Cleaveland MK (2012) Pacific and Atlantic influences on Mesoamerican climate over the past millennium. Clim Dyn 39(6):1431–1446. doi:10.1007/s00382-011-1205-z CrossRefGoogle Scholar
  34. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. Univ. of Chicago Press, Chicago, p 73Google Scholar
  35. Therrell, M.D., Stahle, D.W., Cleaveland, M.K. and Villanueva- Diaz, J (2002) Warm season tree growth and precipitation over Mexico. Journal of Geophysical Research 107(D14), doi:10.1029/2001 DJ000851
  36. Villalba R, Luckman BH, Boninsegna JA, D’Arrigo RD, Lara A, Villanueva-Diaz J, Masiokas M, Argollo J, Soliz C, LeQuesne C, Stahle D, Roig F, Aravena JC, Wiles G, Hartsough P, Wilson RJS, Watson E, Cook ER, Cerano-Paredes J, Therrell M, Cleaveland M, Morales MJ, Moya J, Pacajes J, Massacchesi G, Biondi F, Urrutia R, Martinez PG (2011) Dendroclimatology from regional to continental scales: understanding regional processes to reconstruct large-scale climatic variations across the Western Americas. In Hughes, M.K., Swetnam, T.W. and Diaz, H.F. (eds.) Dendroclimatology: progress and prospects, Springer. Book Chapter 7. p. 175-227Google Scholar
  37. Villanueva–Díaz J, Stahle DW, Luckman B, Cerano–Paredes J, Therrell MD, Cleaveland MK, Cornejo–Oviedo E (2007) Winter–spring precipitation reconstructions from tree rings for northeast México. Clim Chang 83:117–131CrossRefGoogle Scholar
  38. Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, McDowell NG (2012) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang. doi:10.1038/NCLIMATE1693 Google Scholar
  39. Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of Oklahoma, 52-57Google Scholar
  40. Wolter K, Timlin MS (1998) Measuring the strength of ENSO events—how does 1997/98 rank? Weather 53:315–324CrossRefGoogle Scholar
  41. Wolter K, Timlin MS (2011) El Niño/Southern Oscillation behavior since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext). Int J Climatol 31:1074–1087CrossRefGoogle Scholar
  42. Worley SJ, Woodruff SD, Reynolds RW, Lubker SJ, Lott N (2005) ICOADS Release 2.1 data and products. Int J Climatol 25:823–842. doi:10.1002/joc.1166, CLIMAR-II Special IssueCrossRefGoogle Scholar

Copyright information

© ISB 2014

Authors and Affiliations

  • Marin Pompa-García
    • 1
  • Liliana Miranda-Aragón
    • 2
  • Carlos Arturo Aguirre-Salado
    • 3
  1. 1.Facultad de Ciencias ForestalesUniversidad Juárez del Estado de DurangoDurangoMexico
  2. 2.Facultad de Agronomía y VeterinariaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Facultad de IngenieríaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations