International Journal of Biometeorology

, Volume 58, Issue 10, pp 2071–2083 | Cite as

Modelling soil borne fungal pathogens of arable crops under climate change

  • L. M. Manici
  • S. Bregaglio
  • D. Fumagalli
  • M. Donatelli
Original Paper

Abstract

Soil-borne fungal plant pathogens, agents of crown and root rot, are seldom considered in studies on climate change and agriculture due both to the complexity of the soil system and to the incomplete knowledge of their response to environmental drivers. A controlled chamber set of experiments was carried out to quantify the response of six soil-borne fungi to temperature, and a species-generic model to simulate their response was developed. The model was linked to a soil temperature model inclusive of components able to simulate soil water content also as resulting from crop water uptake. Pathogen relative growth was simulated over Europe using the IPCC A1B emission scenario derived from the Hadley-CM3 global climate model. Climate scenarios of soil temperature in 2020 and 2030 were compared to the baseline centred in the year 2000. The general trend of the response of soil-borne pathogens shows increasing growth in the coldest areas of Europe; however, a larger rate of increase is shown from 2020 to 2030 compared to that of 2000 to 2020. Projections of pathogens of winter cereals indicate a marked increase of growth rate in the soils of northern European and Baltic states. Fungal pathogens of spring sowing crops show unchanged conditions for their growth in soils of the Mediterranean countries, whereas an increase of suitable conditions was estimated for the areals of central Europe which represent the coldest limit areas where the host crops are currently grown. Differences across fungal species are shown, indicating that crop-specific analyses should be ran.

Keywords

Modelling crop diseases Large area simulation Foot rot Winter cereals Spring sowing crops Soil temperature 

References

  1. Aegerter BJ, Gordon TR, Davis RM (2000) Occurrence and pathogenicity of fungi associated with melon root rot and vine decline in California. Plant Dis 84:224–230, 10.1094/PDIS.2000.84.3.224 CrossRefGoogle Scholar
  2. Anderson KA, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszakc P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544, 10.1016/j.tree.2004.07.021 CrossRefGoogle Scholar
  3. Avilés M, Castillo S, Bascon J, Zea-Bonilla T, Martín-Sánchez PM, Pérez-Jiménez RM (2008) First report of Macrophomina phaseolina causing crown and root rot of strawberry in Spain. Plant Pathol 57:382. doi:10.1111/j.1365-3059.2007.01717.x CrossRefGoogle Scholar
  4. Backhouse D, Burgess LW (2002) Climatic analysis of the distribution of Fusarium graminearum, F. pseudograminearum and F. culmorum on cereals in Australia. Aust Plant Path 31:321–327. doi:10.1071/AP02026 CrossRefGoogle Scholar
  5. Bechini L, Bocchi S, Maggiore T, Confalonieri R (2006) Parameterization of a crop growth and development simulation model at sub-model components level. An example for winter wheat (Triticum aestivum L.). Environ Model Softw 21:1042–1054. doi:10.1016/j.envsoft.2005.05.006 CrossRefGoogle Scholar
  6. Bockus W, Shroyer J (1998) The impact of reduced tillage on soilborne plant pathogens. Annu Rev Plant Physiol Plant Mol Biol 36:485–500. doi:10.1146/annurev.phyto.36.1.485 Google Scholar
  7. Boller EF, Avilla J, Joerg E, Malavolta C, Wijnands FG, Esbjerg P (2004) Integrated production principles and technical guidelines. In: Boller EF, Avilla J, Joerg E, Malavolta C, Wijnands FG, Esbjerg P (eds) 3rd edn. IOBC wprs Bulletin Bulletin OILB. 27:(2)2004, http://www.iobc-wprs.org/ip_ipm/01_IOBC_Principles_and_Tech_Guidelines_2004.pdf Accessed 13 August 2013
  8. Bregaglio S, Donatelli M, Confalonieri R (2013) Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agron Sust Devel 33:767–776. doi:10.1007/s13593-013-0149-6 CrossRefGoogle Scholar
  9. Bristow KL (2002) Thermal conductivity. In: Methods of soil analysis. Part 4. Physical methods. In: Dane JH, Topp GC (eds). Madison, pp. 1209–1226Google Scholar
  10. Broders KD, Wallhead MW, Austin GD, Lipps PE, Paul PA, Mullen RW, Dorrance AE (2009) Association of soil chemical and physical properties with Pythium species diversity, community composition, and disease incidence. Phytopathology 99:957–967. doi:10.1094/PHYTO-99-8-0957 CrossRefGoogle Scholar
  11. Challinor AJ, Simelton ES, Fraser EDG, Hemming D, Collins M (2010) Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environ Res Lett 5:034012. doi:10.1088/1748-9326/5/3/034012 CrossRefGoogle Scholar
  12. Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Plant Physiol Plant Mol Biol 37:399–426. doi:10.1146/annurev.phyto.37.1.399 Google Scholar
  13. Colbach N, Maurin N, Huet P (1996) Influence of cropping system on foot rot of winter wheat in France. Crop Prot 15:295–305. doi:10.1016/0261-2194(95)00150-6 CrossRefGoogle Scholar
  14. Confalonieri R, Bregaglio S, Acutis M (2010) A proposal of an indicator for quantifying model robustness based on the relationship between variability of errors and of explored conditions. Ecol Modell 221:960–964. doi:10.1016/j.ecolmodel.2009.12.003 CrossRefGoogle Scholar
  15. Cook RJ (1980) Fusarium foot rot wheat and its control in the Pacific Northwest. Plant Dis 64:1061–1066CrossRefGoogle Scholar
  16. Daamen RA, Langerak CJ, Stol W (1991) Surveys of cereal diseases and pests in the Netherlands. 3. Monographella nivalis and Fusarium spp. in winter wheat fields and seed lots. Neth J Plant Path 97:105–114. doi:10.1007/BF01974274 CrossRefGoogle Scholar
  17. Dhingra OD, Sinclair JB (1978) Biology and pathology of Macrophomina phaseolina. Imprensa da Universidade Federal de Viscosa, BrazilGoogle Scholar
  18. Diekkrüger B, Nöersheuser P, Richter O (1995) Modelling pesticide dynamics of a loam site using HERBSIM and SIMULAT. Ecol Modell 81:111–119. 10.1016/0304-3800(94)00164-D CrossRefGoogle Scholar
  19. Dixon GR, Tilston EL (2010) Soil-borne pathogens and their interactions with the soil environment. In: Dixon GR, Tilston EL (eds) Chapter 6: soil microbiology and sustainable crop production. Springer, Dordrecht, pp 197–272Google Scholar
  20. Donatelli M, Rizzoli AE (2008) A design for framework-independent model components of biophysical systems. In: Sànchez-Marrè M, Béjar J, Comas J, Rizzoli AE, Guariso G (eds) Proceedings of International Environmental Modelling and Software Society (iEMSs) 2008 International iEMSs Congress. Barcelona, Spain, pp 727–734Google Scholar
  21. Donatelli M, Stöckle CO, Ceotto E, Rinaldi M (1997) Evaluation of CropSyst for cropping systems at two locations of northern and southern Italy. Eu J Agron 6:35–45. doi:10.1016/S1161-0301(96)02029-1 CrossRefGoogle Scholar
  22. Donatelli M, Cerrani D, Fanchini F, Fumagalli D, Rizzoli AE (2012a) Enhancing model reuse via component centered modelling frameworks: the vision and example realizations. In: Proceedings of International Environmental Modelling and Software Society (iEMSs), 2012 International IEMSs Congress, Managing resources of a limited planet (eds. Seppelt R, Voinov AA, Lange S, Bankamp D). Leipzig, Germany, pp 1185–1192Google Scholar
  23. Donatelli M, Fumagalli D, Zucchini A, Duveiller G, Nelson RL, Baruth B (2012b) A EU27 database of daily weather data derived from climate change scenarios for use with crop simulation models. In: Seppelt R, Voinov AA, Lange S, Bankamp D (eds) Proceedings of International Environmental Modelling and Software Society (iEMSs), 2012 International IEMSs Congress, Managing resources of a limited planet. Leipzig, pp. 868–875Google Scholar
  24. Donatelli M, Bregaglio S, Confalonieri R, De Mascellis R, Acutis M (2014) Comparing modelling solutions at sub-model level: a case on soil temperature simulation. Environ Modell Softw (in press )Google Scholar
  25. Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. J Geophys Res 116, D16106. doi:10.1029/2011JD015934 CrossRefGoogle Scholar
  26. El Araby ME, Kurle JE, Stetina RS (2003) First report of charcoal rot (Macrophomina phaseolina) on soybean in Minnesota. Plant Dis 87:202. doi:10.1094/PDIS.2003.87.2.202C Google Scholar
  27. El-Hissy FT, Abdel-Kader MI (1980) Effect of five pesticides on the mycelial growth of some soil and pathogenic fungi. Z Allg Mikrobiol 20:257–263CrossRefGoogle Scholar
  28. European Commission (DG ENV) (2002) Integrated crop management system in the EU http://ec.europa.eu/environment/agriculture/pdf/icm_finalreport.pdf Accessed 13 August 2013
  29. Gilligan CA (1983) Modeling of soilborne pathogens. Annu Rev Plant Physiol Plant Mol Biol 21:45–64. doi:10.1146/annurev.py.21.090183.000401 Google Scholar
  30. Glynne MD (1965) Crop sequence in relation to soil-borne pathogens. In: Baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens, prelude to biological control. University of California Press, Berkeley, pp 423–433Google Scholar
  31. Gulya TJ, Krupinsky J, Draper M, Charlet LD (2002) First report of charcoal rot (Macrophomina phaseolina) on sunflower in North and South Dakota. Plant Dis 86:923–923. doi:10.1094/PDIS.2002.86.8.923A CrossRefGoogle Scholar
  32. Heffer LV, Johnson KB (2007) White mold. The plant health instructor. http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/WhiteMold.aspx Accessed 13 August 2013
  33. Hendrix FF, Campbell WA (1973) Pythiums as plant pathogens. Annu Rev Plant Physiol Plant Mol Biol 11:77–98Google Scholar
  34. Hersh MH, Vilgalys R, Clark JS (2012) Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology 93:511–520. doi:10.1890/11-0598.1 CrossRefGoogle Scholar
  35. Horton BJ (2012) Models for estimation of hourly soil temperature at 5cm depth and for degree-day accumulation from minimum and maximum soil temperature. Soil Res 50:447–454. doi:10.1071/SR12165 CrossRefGoogle Scholar
  36. IPCC (2007). Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, CambridgeGoogle Scholar
  37. Jara J, Stöckle CO (1999) Simulation of water uptake in maize, using different levels of process detail. Agron J 91:256–265. doi:10.2134/agronj1999.00021962009100020013x CrossRefGoogle Scholar
  38. Jimenez Diaz RM, Blanco Lopez MA, Sackston WE (1983) Incidence and distribution of charcoal rot of sunflower caused by Macrophomina phaseolina in Spain. Plant Dis 67:1033–1036CrossRefGoogle Scholar
  39. Jones JW, Ritchie JT (1990) Crop growth models. In: Hoffman GJ, Howell TA, Solomon KH (eds) Management of farm irrigation systems, Chap. 4. St. Joseph, MI, USA, pp 63–89Google Scholar
  40. Juroszek P, von Tiedemann A (2011) Potential strategies and future requirements for plant disease management under a changing climate. Plant Path 60:100–112. doi:10.1111/j.1365-3059.2010.02410.x CrossRefGoogle Scholar
  41. Kim YK, Xiao CL, Rogers JD (2005) Influence of culture media and environmental factors on mycelial growth and pycnidial production of Sphaeropsis pyriputrescens. Mycologia 97:25–32. doi:10.3852/mycologia.97.1.25 CrossRefGoogle Scholar
  42. Kluitenberg GJ (2002) Heat capacity and specific heat. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part 4. Physical methods. Madison, WI, USA, pp 1201–1208Google Scholar
  43. Lakshmi V, Jackson TJ, Zehrfuhs D (2003) Soil moisture–temperature relationships: results from two field experiments. Hydrol Process 17:3041–3057. doi:10.1002/hyp.1275 CrossRefGoogle Scholar
  44. LaMondia J, Elmer WH, Mervosh TL, Cowles RS (2002) Integrated management of strawberry pests by rotation and intercropping. Crop Prot 21:837–846. doi:10.1016/S0261-2194(02)00050-9 CrossRefGoogle Scholar
  45. Loo JA (2009) Ecological impacts of non-native invertebrates and fungi on terrestrial ecosystems. Biol Invasions 11:81–96. doi:10.1007/s10530-008-9321-3 CrossRefGoogle Scholar
  46. Manici LM, Caputo F, Cerato C (1995) Temperature response of isolates of Macrophomina phaseolina from different climatic regions of sunflower production in Italy. Plant Dis 79:834–838CrossRefGoogle Scholar
  47. Marín S, Sanchis V, Magan N (1995) Water activity, temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. Can J Microbiol 41:1063–1070CrossRefGoogle Scholar
  48. Mathre DE (1997) Compendium of Barley Diseases. In: Mathre DE (ed) 2nd ed. American Phytopathological Society, St.Paul, MN, p 120Google Scholar
  49. Mehta YR (1998) Constraints on the integrated management of spot blotch of wheat. In: Duveiller E, Dubin HJ, Reeves J, McNab A (eds) Helminthosporium blights of wheat: spot blotch and tan spot, CIMMYT. Mexico, pp. 18–27Google Scholar
  50. Micale F, Genovese G (2004), Methodology of the MARS crop yield forecasting system. Meteorological data collection, processing and analysis. Publications Office: European Communities, Italy Google Scholar
  51. Millar CS, Colhoun J (1969) Fusarium diseases in cereals: VI. Epidemiology of Fusarium nivale on wheat. Trans Br Mycol Soc 52:195–204CrossRefGoogle Scholar
  52. Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island Press, WashingtonGoogle Scholar
  53. Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, Williams JR (2002) Soil and water assessment tool. User’s manual. Grassland, Soil and Water Research Laboratory, Agricultural Research Service, TempleGoogle Scholar
  54. Palmero D, de Cara M, Iglesias C, Tello JC (2009) The interactive effects of temperature and osmotic potential on the growth of aquatic isolates of Fusarium culmorum. Geomicrobiol J 26:321–325. doi:10.1080/01490450902748641 CrossRefGoogle Scholar
  55. Parton WJ (1984) Predicting soil temperatures in a shortgrass steppe. Soil Sci 138:93–101CrossRefGoogle Scholar
  56. Parton WJ, Logan JA (1981) A model for diurnal variation in soil and air temperature. Agric Meteorol 23:205–216CrossRefGoogle Scholar
  57. Parton WJ, Hartman MD, Ojima DS, Schimel DS (1998) DAYCENT and its land surface submodel: description and testing. Global Planet Change 19:35–48. doi:10.1016/S0921-8181(98)00040-X CrossRefGoogle Scholar
  58. Pettitt TR, Parry DW, Polley RW (1996) Effect of temperature on the incidence of nodal foot rot symptoms in winter wheat crops in England and Wales caused by Fusarium culmorum and Microdochium nivale. Agr Forest Meteorol 79:233–242. doi:10.1016/0168-1923(95)02281-3 CrossRefGoogle Scholar
  59. Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos T Roy Soc B 360:2021–2035. doi:10.1098/rstb.2005.1752303 CrossRefGoogle Scholar
  60. Rao VUM, Rao AVMS, Rao GGSN, Satyanarayana T, Manikandan N, Venkateshwarlu B (2011) Impact of climate change on crop water requirements and adaptation strategies. Chapter 24 in. Challenges and Opportunities in Agrometeorology. (Eds. Attri SD, Rathore LS, Sivakumar MVK, Dash SK) pp 311–319Google Scholar
  61. Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716. doi:10.1046/j.0028-646x.2001.00210.x CrossRefGoogle Scholar
  62. Ritchie JT (1998) Soil water balance and plant water stress. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, pp 41–54CrossRefGoogle Scholar
  63. Schwartz HF (2012) Root rots of dry beans. Fact sheet no. 2.938. Crop series: diseases. Colorado State University Cooperative Extension Service. http://www.ext.colostate.edu/pubs/crops/02938.pdf Accessed 13 August 2013
  64. Smiley RW, Patterson LM (1996) Pathogenic fungi associated with Fusarium foot rot of winter wheat in the semiarid Pacific Northwest USA. Plant Dis 80:944–949CrossRefGoogle Scholar
  65. Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eu J Agron 18:289–307. doi:10.1016/S1161-0301(02)00109-0 CrossRefGoogle Scholar
  66. Sturz AV, Bernier CC (1989) Influence of crop rotations on winter wheat growth and yield in relation to the dynamics of pathogenic crown and root rot fungal complexes. Can J Plant Path 11:114–121CrossRefGoogle Scholar
  67. Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric For Meteorol 138:82–92. doi:10.1016/j.agrformet.2006.03.014 CrossRefGoogle Scholar
  68. Vogt WG, Bedo D (2001) A preliminary weather-driven model for estimating the seasonal phenology and abundance of Lucilia cuprina. In: FLICS Conference (eds. Tasmanian Institute of Agricultural Research, University of Tasmania) pp. 62–64. Launceston, TasGoogle Scholar
  69. Walthall CL, Hatfield J, Backlund P et al (2012) Climate change and agriculture in the United States: effects and adaptation. USDA Technical Bulletin 1935, WashingtonGoogle Scholar
  70. Wrather JA, Chambers AY, Fox JA, Moore WF, Sciumbato GL (1995) Soybean disease loss estimates for the southern United States, 1974 to 1994. Plant Dis 79:1076–1079Google Scholar
  71. Yan W, Hunt LA (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84:607–614. doi:10.1006/anbo.1999.0955 CrossRefGoogle Scholar
  72. Yang XB, Navi SS (2005) First report of charcoal rot epidemics caused by Macrophomina phaseolina in soybean in Iowa. Plant Dis 89:526–526. doi:10.1094/PD-89-0526B CrossRefGoogle Scholar
  73. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar
  74. Zveibil A, Freeman S (2005) First report of crown and root rot in strawberry caused by Macrophomina phaseolina in Israel. Plant Dis 89:1014–1014. doi:10.1094/PD-89-1014C CrossRefGoogle Scholar

Copyright information

© ISB 2014

Authors and Affiliations

  • L. M. Manici
    • 1
  • S. Bregaglio
    • 2
  • D. Fumagalli
    • 3
  • M. Donatelli
    • 1
  1. 1.Consiglio Nazionale per la Ricerca e sperimentazione in AgricolturaResearch Centre for Industrial CropsBolognaItaly
  2. 2.Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy - CASSANDRAUniversity of MilanMilanItaly
  3. 3.European Commission, Joint Research CentreInstitute for the Protection and Security of the Citizen, MARS Unit, AGRI4CAST ActionIspraItaly

Personalised recommendations