Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula

Abstract

Airborne pollen transport at micro-, meso-gamma and meso-beta scales must be studied by atmospheric models, having special relevance in complex terrain. In these cases, the accuracy of these models is mainly determined by the spatial resolution of the underlying meteorological dataset. This work examines how meteorological datasets determine the results obtained from atmospheric transport models used to describe pollen transport in the atmosphere. We investigate the effect of the spatial resolution when computing backward trajectories with the HYSPLIT model. We have used meteorological datasets from the WRF model with 27, 9 and 3 km resolutions and from the GDAS files with 1 ° resolution. This work allows characterizing atmospheric transport of Olea pollen in a region with complex flows. The results show that the complex terrain affects the trajectories and this effect varies with the different meteorological datasets. Overall, the change from GDAS to WRF-ARW inputs improves the analyses with the HYSPLIT model, thereby increasing the understanding the pollen episode. The results indicate that a spatial resolution of at least 9 km is needed to simulate atmospheric flows that are considerable affected by the relief of the landscape. The results suggest that the appropriate meteorological files should be considered when atmospheric models are used to characterize the atmospheric transport of pollen on micro-, meso-gamma and meso-beta scales. Furthermore, at these scales, the results are believed to be generally applicable for related areas such as the description of atmospheric transport of radionuclides or in the definition of nuclear-radioactivity emergency preparedness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Arritt RW, Clark CA, Goggi AS, Lopez Sanchez H, Westgate ME, Riese JM (2007) Lagrangian numerical simulations of canopy air flow effects on maize pollen dispersal. Field Crop Res 102:151–162

    Article  Google Scholar 

  2. Aylor DE (2002) Settling speed of corn (Zea mays) pollen. J Aerosol Sci 33:1601–1607

    CAS  Article  Google Scholar 

  3. Borge R, Alexandrov V, Del Vas JJ, Lumbreras J, Rodriguez E (2008) A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos Environ 42:8560–8574

    CAS  Article  Google Scholar 

  4. Carvalho D, Rocha A, Gómez-Gesteira M, Santos C (2012) A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environ Model Software 33:23–34

    Article  Google Scholar 

  5. Challa VS, Indracanti J, Rabarison MK, Patrick C, Baham JM, Young J, Hughes R, Hardy MG, Swanier SJ, Yerramilli A (2009) A simulation study of mesoscale coastal circulations in Mississippi Gulf coast. Atmos Res 91:9–25

    Article  Google Scholar 

  6. D’Amato G, Spieksma G, Liccardi G, Jäger S, Russo M, Kontou-Fili K, Nikkels H, Wüthrich B, Bonini S (1998) Pollen-related allergy in Europe. Allergy 53:567–578

    Article  Google Scholar 

  7. De Linares C, Nieto-Lugilde D, Alba F, Díaz de la Guardia C, Galán C, Trigoz MM (2007) Detection of airborne allergen (Ole e 1) in relation to Olea europaea pollen in S Spain. Clin Exp Allergy 37:125–132

    Article  Google Scholar 

  8. Draxler RR, Stunder B, Rolph G, Taylor A (2013) HYSPLIT_4 user’s guide. NOAA Air Resources Laboratory. http://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf

  9. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  10. Dudhia J (1996) A multilayer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users Workshop, Boulder, CO, PSU/NCAR

  11. Fernández-Rodriguez S, Skjøth C, Tormo-Molina R, Brandao R, Caeiro E, Silva-Palacios I, Gonzalo-Garijo Á, Smith M (2014) Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula. Int J Biometeorol. doi:10.1007/s00484-012-0629-4

    Google Scholar 

  12. Fornaciari M, Galán C, Mediavilla A, Domínguez E, Romano B (2000) Aeropalynological and phenological study in two different olive Mediterranean areas: Córdoba (Spain) and Perugia (Italia). Plant Biosyst 134:199–204

    Article  Google Scholar 

  13. Galán C, Tormo R, Cuevas J, Infante F, Domınguez E (1991) Theoretical daily variation patterns of airborne pollen in the southwest of Spain. Grana 30:201–209

    Article  Google Scholar 

  14. Galán C, Cariñanos P, Alcázar P, Domínguez E (2007) Management and quality manual. Spanish Aerobiology Network (REA). Servicio Publicaciones Universidad de Córdoba, Córdoba, ISBN 978-84-690-6353-8

    Google Scholar 

  15. Galán C, Antunes C, Brandao R, Torres C, Garcia-Mozo H, Caeiro E, Ferro R, Prank M, Sofiev M, Albertini R, Berger U, Cecchi L, Celenk S, Grewling L, Jackowiak B, Jaager S, Kennedy R, Rantio-Lehtimaki A, Reese G, Sauliene I, Smith M, Thibaudon M, Weber B, Weichenmeier I, Pusch G, Buters JTM, on behalf of the HIALINE Working Group (2013) Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1. Allergy 68:809–812

    Article  Google Scholar 

  16. García-Mozo H, Galán C, Vazquez L (2005) The reliability of geostatistic interpolation in olive field phenology. Aerobiologia 22:97–108

    Google Scholar 

  17. García-Mozo H, Galán C, Belmonte J, Bermejo D, Díaz de la Guardia C, Elvira B et al (2008) Regional phenological models to forecast the start and peak of Quercus pollen season in Spain. Agr Forest Meteorol 148:372–380

    Article  Google Scholar 

  18. Gassmann MI, Pérez CF (2006) Trajectories associated to regional and extra- regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int J Biometeorol 50:280–291

    Google Scholar 

  19. Gesch DB, Larson KS (1996) Techniques for development of global 1-kilometer digital elevation models. Proc. Pecora 13th Symp. human interactions with the environment—perspectives from space, 13th, Sioux Falls, South Dakota, August 20-22, Proceedings: Bethesda, Maryland, American Society of Photogrammetry and Remote Sensing

  20. Ha K-J, Hyun Y-K, Oh H-M, Kim K-E, Mahrt L (2007) Evaluation of boundary layer similarity theory for stable conditions in CASES-99. Mon Weather Rev 135:3474–3483

    Article  Google Scholar 

  21. Harris JM, Draxler RR, Oltmans SJ (2005) Trajectory model sensitivity to differences in input data and vertical transport method. J Geophys Res 110, D14109. doi:10.1029/2004JD005750

    Article  Google Scholar 

  22. Hernández-Ceballos MA, García-Mozo H, Adame JA, Domínguez-Vilches E, De la Morena BA, Bolívar JP, Galán C (2011) Synoptic and meteorological characterization of olive pollen transport in Cordoba province (South-western Spain). Int J Biometeorol 55:17–34

    Article  Google Scholar 

  23. Hernández-Ceballos MA, Adame JA, Bolívar JP, De la Morena BA (2013) A mesoscale simulation of coastal circulation in the Guadalquivir valley (southwestern Iberian Peninsula) using the WRF-ARW model. Atmos Res 124:1–20

    Article  Google Scholar 

  24. Hirst J (1952) An automatic volumetric spore-trap. Ann Appl Biol 36:257–265

    Article  Google Scholar 

  25. Hoinka KP, De Castro M (2003) The Iberian Peninsula thermal low. Q J Roy Meteorol Soc 129:1491–1511

    Article  Google Scholar 

  26. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  27. IOC (2011). International Olive Council. http://www.internationaloliveoil.org/

  28. Izquierdo R, Belmonte J, Avila A, Alarcón M, Cuevas E, Alonso-Pérez S (2011) Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). Int J Biometeorol 55:67–85

    Article  Google Scholar 

  29. Jarosz N, Loubet B, Durand B, McCartney A, Foueillassar X, Huber L (2003) Field measurements of airborne concentration and deposition rate of maize pollen. Agr Forest Meteorol 19:37–51

    Article  Google Scholar 

  30. Jiménez PA, Dudhia J (2012) Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteor Climatol 51:300–316

    Article  Google Scholar 

  31. Jiménez-Guerrero P, Jorba O, Baldasano JM, Gassó S (2008) The use of a modelling system as a tool for air quality management: annual high-resolution simulations and evaluation. Sci Total Environ 390:323–340

    Article  Google Scholar 

  32. Jones AL, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ 326:151–180

    CAS  Article  Google Scholar 

  33. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  34. Kain JS, Fritsch JM (1993) Convective parameterisation for mesoscale models: the Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models. Meteorol Monogr 24:165–170

    Google Scholar 

  35. Maillard R (1975) L’olivier. INVUFLEC, Paris

    Google Scholar 

  36. Makra L, Santa T, Matyasovszky I, Damialis A, Karatzas K, Bergmann KC, Vokou D (2010) Airborne pollen in three European cities: detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. J Geophys Res Atmos 115, D24220. doi:10.1029/2010JD014743

    Article  Google Scholar 

  37. Michel D, Gehrig R, Rotach MW, Vogt R (2010) MicroPoem: experimental investigation of birch pollen emissions. In: 29th conference on agricultural and forest meteorology, 19th symposium on boundary layers and turbulence, ninth symposium on the Urban Environment, Keystone, 2 - 6 August. http://www.meteoschweiz.admin.ch/web/de/forschung/publikationen/alle_publikationen/micropoem__experimental.html

  38. Orlandi F, Garcia-Mozo H, Galán C, Romano B, Diaz de la Guardia C, Ruiz L, Trigo MM, Dominguez-Vilches E, Fornaciari M (2010) Olive flowering trends in a large Mediterranean area (Italy and Spain). Int J Biometeorol 54:151–163

    Article  Google Scholar 

  39. Orlanski I (1975) A rational subdivision of scales for atmospheric processes. B Am Meteorol Soc 56:527–530

    Google Scholar 

  40. Papanastasiou DK, Melas D, Lissaridis I (2010) Study of wind field under sea breeze conditions; an application of WRF model. Atmos Res 98:102–117

    Article  Google Scholar 

  41. Prtenjak MT, Srnec L, Peternel R, Madžarević V, Hrga I, Stjepanović B (2012) Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia. Int J Biometeorol 56:1145–1158

    Article  Google Scholar 

  42. Schueler S, Schlünzen K (2006) Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environ Model Assess 11:179–194

    Article  Google Scholar 

  43. Seinfield JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  44. Sikoparija B, Skjøth CA, Alm Kübler K, Dahl A, Sommer J, Grewling Radisic P, Smith M (2013) A mechanism for long distance transport of Ambrosia pollen from the Pannonian Plain. Agr Forest Meteorol 180:112–117

    Article  Google Scholar 

  45. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF version 2. NCAR Tech Notes-468 + STR.

  46. Skjøth CA, Hertel O, Ellermann T (2002) Use of the ACDEP trajectory model in the Danish nation-wide background monitoring programme. Phys Chem Earth A B C 27(35):1469–1477

    Article  Google Scholar 

  47. Skjøth CA, Smith M, Brandt J, Emberlin J (2009) Are the birch trees in Southern England a source of Betula pollen for North London? Int J Biometeorol 53:75–86

    Article  Google Scholar 

  48. Skjøth CA, Sommer J, Frederiksen L, Gosewinkel Karlson U (2012) Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmos Chem Phys 12:11107–11123

    Article  Google Scholar 

  49. Skjøth CA, Ørby PV, Becker T, Geels C, Schlunssen V, Sigsgaard T, Bønløkke JH, Sommer J, Søgaard P, Hertel O (2013) Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences 10:541–554

    Article  Google Scholar 

  50. Smith M, Skjøth CA, Myszkowska D, Uruska A, Malgozata P, Stach A et al (2008) Long-range transport of Ambrosia pollen to Poland. Agr Forest Meteorol 148:1402–1411

    Article  Google Scholar 

  51. Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimaki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402

    CAS  Article  Google Scholar 

  52. Sofiev M, Siljamo P, Ranta H, Linkosalo T, Jaeger S, Rasmussen A, Rantio-Lehtimaki A, Severova E, Kukkonen J (2013) A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. Int J Biometeorol 57:45–58

    CAS  Article  Google Scholar 

  53. Sousa SIV, Martins FG, Pereira MC, Alvim-Ferraz MCM, Ribeiro H, Oliveira M, Abreu I (2008) Influence of atmospheric ozone, PM10 and meteorological factors on the concentration of airborne pollen and fungal spores. Atmos Environ 42:7452–7464

    CAS  Article  Google Scholar 

  54. Stohl A, Seibert P (1998) Accuracy of trajectories as determined from the conservation of meteorological tracers. Q J Roy Meteorol Soc 12:1465–1484

    Article  Google Scholar 

  55. Veriankaite L, Siljamo P, Sofiev M, Sauliene I, Kukkonen J (2010) Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia 26:47–62

    Article  Google Scholar 

  56. Wang W, Coauthors (2014) ARW version 3.5 modeling system user’s guide. NCAR Tech. Note, 413 pp., Natl. Cent. for Atmos. Res., Boulder, CO. [available from http://www.mmm.ucar.edu/wrf/users/]

  57. Zemmer F, Karaca F, Ozkaragoz F (2012) Ragweed pollen observed in Turkey: detection of sources using back trajectory models. Sci Total Environ 430:101–108

    CAS  Article  Google Scholar 

  58. Zink K, Vogel H, Vogel B, Magyar D, Kottmeier C (2012) Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. Int J Biometeorol 56:669–680

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the European Social Fund and the Spanish Science Ministry for joint financing. Dr. García-Mozo was supported by a “Ramón y Cajal” contract. The Andalusia Regional Government funded the project entitled “Analisis de la Dinamica del Polen Atmosferico en Andalucia” (RNM-5958). Dr. Skjøth was supported by the Danish Research Council through the project SUPREME. The authors also thank the Science and Innovation Ministry for funding the project entitled “Impacto del Cambio Climatico en la Fenologia de especies vegetales del Centro y Sur de la Peninsula Iberica” (FENOCLIM) CGL2011-24146. Support from the EU FP7-HIALINE project is gratefully acknowledged. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model used in this publication, to the Andalusia Government Agroclimatic Information Network (RIA) for providing meteorological observations for Cordoba, and to the ENRESA company for facilitating the pollen and meteorological study at the “El Cabril” station.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Hernández-Ceballos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3006 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hernández-Ceballos, M.A., Skjøth, C.A., García-Mozo, H. et al. Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula. Int J Biometeorol 58, 2031–2043 (2014). https://doi.org/10.1007/s00484-014-0804-x

Download citation

Keywords

  • Back trajectories
  • Atmospheric models
  • HYSPLIT
  • WRF
  • Olea pollen
  • Southern Spain