International Journal of Biometeorology

, Volume 58, Issue 8, pp 1739–1748 | Cite as

Long-term temporal changes in central European tree phenology (1946−2010) confirm the recent extension of growing seasons

  • Eva Kolářová
  • Jiří Nekovář
  • Peter Adamík
Original Paper


One of the ways to assess the impacts of climate change on plants is analysing their long-term phenological data. We studied phenological records of 18 common tree species and their 8 phenological phases, spanning 65 years (1946−2010) and covering the area of the Czech Republic. For each species and phenophase, we assessed the changes in its annual means (for detecting shifts in the timing of the event) and standard deviations (for detecting changes in duration of the phenophases). The prevailing pattern across tree species was that since around the year 1976, there has been a consistent advancement of the onset of spring phenophases (leaf unfolding and flowering) and subsequent acceleration of fruit ripening, and a delay of autumn phenophases (leaf colouring and leaf falling). The most considerable shifts in the timing of spring phenophases were displayed by early-successional short-lived tree species. The most pronounced temporal shifts were found for the beginning of seed ripening in conifers with an advancement in this phenophase of up to 2.2 days year−1 in Scots Pine (Pinus sylvestris). With regards to the change in duration of the phenophases, no consistent patterns were revealed. The growing season has extended on average by 23.8 days during the last 35 years. The most considerable prolongation was found in Pedunculate Oak (Quercus robur): 31.6 days (1976−2010). Extended growing season lengths do have the potential to increase growth and seed productivity, but unequal shifts among species might alter competitive relationships within ecosystems.


Climate change Flowering Growing season Long-term trends Phenology Trees 

Supplementary material

484_2013_779_MOESM1_ESM.pdf (1.7 mb)
ESM 1 (PDF 1701 kb)


  1. Adamík P, Král M (2008) Climate and resource-driven long-term changes in dormice populations negatively affect hole-nesting songbirds. J Zool 275:209–215CrossRefGoogle Scholar
  2. Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H (2002) Changes in European spring phenology. Int J Climatol 22:1727–1738CrossRefGoogle Scholar
  3. Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2008) Climatic fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 29:223–242CrossRefGoogle Scholar
  4. Brázdil R, Bělínová M, Rožnovský J (2011) Phenological observations made by the I. R. Bohemian Patriotic-Economic Society, 1828−1847. Theor Appl Climatol 105:71–81CrossRefGoogle Scholar
  5. Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agr Forest Meteorol 108:101–112CrossRefGoogle Scholar
  6. Chmielewski F-M, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Res 19:257–264CrossRefGoogle Scholar
  7. Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207CrossRefGoogle Scholar
  8. Easterling DR (2002) Recent changes in frost days and the frost-free season in the United States. Bull Am Meteorol Soc 83:1327–1332Google Scholar
  9. Estrella N, Menzel A (2006) Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Res 32:253–267CrossRefGoogle Scholar
  10. Estrella N, Sparks TH, Menzel A (2009) Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Climate Res 39:235–248CrossRefGoogle Scholar
  11. Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691CrossRefGoogle Scholar
  12. Garzía-Mozo H, Mestre A, Galán C (2010) Phenological trends in southern Spain: a response to climate change. Agr Forest Meteorol 150:575–580CrossRefGoogle Scholar
  13. Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Glob Change Biol 15:1930–1948CrossRefGoogle Scholar
  14. Harrington R, Woiwood I, Sparks T (1999) Climate change and trophic interactions. Tree 14:146–150Google Scholar
  15. Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114CrossRefGoogle Scholar
  16. Hlavinka P, Trnka M, Semerádová D, Dubrovský M, Žalud Z, Možný M (2009) Effect of drought on yield variability of key crops in Czech Republic. Agr Forest Meteorol 149:431–442CrossRefGoogle Scholar
  17. Kalvāne G, Romanovskaja D, Briede A, Bakšienė E (2009) Influence of climate change on phenological phases in Latvia and Lithuania. Climate Res 39:209–219CrossRefGoogle Scholar
  18. Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462CrossRefGoogle Scholar
  19. Kunkel KE, Easterling DR, Hubbard K, Redmond K (2004) Temporal variations in frost-free season in the United States: 1895 − 2000. Geophys Res Lett 31:1–4CrossRefGoogle Scholar
  20. Larcher W (2006) Altitudial variation in flowering time of lilac (Syringa vulgaris L.) in the Alps in relation to temperature. Sitzungberichte und Anzeiger der mathematisch- naturwissenschaftlichen Klasse 212:3–18Google Scholar
  21. Linkosalo T, Häkkinen R, Terhivuo J, Tuomenvirta H, Hari P (2009) The time series of flowering and leaf bud burst of boreal trees (1846−2005) support the direct temperature observations of climatic warming. Agr Forest Meteorol 149:453–461CrossRefGoogle Scholar
  22. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659–659CrossRefGoogle Scholar
  23. Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Change Biol 7:657–666CrossRefGoogle Scholar
  24. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976CrossRefGoogle Scholar
  25. Mozny M, Tolasz R, Nekovar J, Sparks T, Trnka M, Zalud Z (2009) The impact of climate change on the yield and quality of Saaz hops in the Czech Republic. Agr Forest Meteorol 149:913–919CrossRefGoogle Scholar
  26. Myking T, Heide OM (1995) Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol 15:697–704CrossRefGoogle Scholar
  27. Nekovář J, Hájková L (2010) Fenologická pozorování v Česku−Historie a současnost. Meteorologické zprávy 63:13–20Google Scholar
  28. Nekovář J, Dalezios N, Koch E, Kubin E, Nejedlik P, Niedzwiedz T, Sparks T, Wielgolaski F-E (2008) The history and current status of plant phenology in Europe. COST Action 725, BrusselsGoogle Scholar
  29. Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18:811–816CrossRefGoogle Scholar
  30. Partanen J, Leinonen I, Repo T (2001) Effect of accumulated duration of the light period on bud burst in Norway spruce (Picea abies) of varying ages. Silva Fenn 35:111–117Google Scholar
  31. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  32. Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214CrossRefGoogle Scholar
  33. Reyssat E, Mahadevan L (2009) Hygromorphs: from pine cones to biometric bilayers. J R Soc Interface 6:951–957CrossRefGoogle Scholar
  34. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefGoogle Scholar
  35. Rötzer T, Chmielewski F-M (2001) Phenological maps of Europe. Climate Res 18:249–257CrossRefGoogle Scholar
  36. Schaber J, Badeck F-W (2005) Plant phenology in Germany over the 20th century. Reg Environ Change 5:37–46CrossRefGoogle Scholar
  37. Schleip C, Sparks TH, Estrella N, Menzel A (2009) Spatial variation in onset dates and trends in phenology across Europe. Climate Res 39:249–260CrossRefGoogle Scholar
  38. Schwartz MD (2003) Phenology: an integrative environmental science. Kluwer, DordrechtGoogle Scholar
  39. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Change Biol 12:343–351CrossRefGoogle Scholar
  40. Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:1715–1725CrossRefGoogle Scholar
  41. Sparks TH, Jaroszewicz B, Krawczyk M, Tryjanowski P (2009) Advancing phenology in Europe’s last lowland primeval forest: non-linear temperature response. Climate Res 39:221–226CrossRefGoogle Scholar
  42. Stříž M, Nekovář J (2010) Prostorová a časová analýza prvních květů a listů smrku obecného (1961−1990, 1991−2009). Meteorologické zprávy 63:101–107Google Scholar
  43. Tooke F, Battey NH (2010) Temperate flowering phenology. J Exp Bot 61:2853–2862CrossRefGoogle Scholar
  44. Trnka M, Brázdil R, Dubrovský M, Semerádová D, Štěpánek P, Dobrovolný M, Možný M, Eitzinger J, Málek J, Formayer H, Balek J, Žalud Z (2011a) A 200-year climate record in Central Europe: implications for agriculture. Agron Sustain Dev 31:631–641CrossRefGoogle Scholar
  45. Trnka M, Eitzinger J, Semerádová D, Hlavinka P, Balek J, Dubrovský M, Kubu G, Štěpánek P, Thaler S, Možný M, Žalud Z (2011b) Expected changes in agroclimatic conditions in Central Europe. Clim Chang 108:261–289CrossRefGoogle Scholar
  46. Trnka M, Olesen JE, Kersebaum KC, Skjelvåg AO, Eitzinger J, Seguin B, Peltonen-Sainio P, Rötter R, Iglesias A, Orlandini S, Dubrovský M, Hlavinka P, Balek J, Eckersten H, Cloppet E, Calanca P, Gobin A, Vučetić V, Nejedlik P, Kumar S, Lalic B, Mestre A, Rossi F, Kozyra J, Alexandrov V, Semerádová D, Žalud Z (2011c) Agroclimatic conditions in Europe under climatic change. Glob Change Biol 17:2298–2318CrossRefGoogle Scholar
  47. Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. P Roy Soc Lond B Bio 272:2561–2569CrossRefGoogle Scholar
  48. Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. P Roy Soc Lond B Bio 268:289–294CrossRefGoogle Scholar
  49. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  50. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Schneider A (2004) The footprint of urban climates on vegetation phenology. Geophys Res Lett 31:1–4Google Scholar
  51. Ziello C, Estrella N, Kostova M, Koch E, Menzel A (2009) Influence of altitude on phenology of selected plant species in the Alpine region (1971−2000). Climate Res 39:227–234CrossRefGoogle Scholar

Copyright information

© ISB 2014

Authors and Affiliations

  • Eva Kolářová
    • 1
  • Jiří Nekovář
    • 2
  • Peter Adamík
    • 1
  1. 1.Department of Zoology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  2. 2.Czech Hydrometeorological InstitutePrague 4Czech Republic

Personalised recommendations