Skip to main content
Log in

Anthropogenic edges, isolation and the flowering time and fruit set of Anadenanthera peregrina, a cerrado savanna tree

  • Phenology - Milwaukee 2012
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Fragmentation exposes plants to extreme environmental conditions with implications for species phenology and reproduction. We investigated whether isolation and edge effects influence size, flowering time, fruit set, and seedling establishment of Anadenanthera peregrina var. falcata. We compared trees in the interior (n = 85), and on the edge (n = 74) of a cerrado savanna fragment as well as in a pasture (n = 26) with respect to size, flowering phenology, flower and fruit production, fruit and seed set, predispersal seed predation, and seedling establishment. Trees in the pasture were larger and produced a higher number of flowers and fruits than trees on the edge and interior, yet seed set did not differ across environments. The plant size structure explained the flower and fruit production, and the self-compatibility breeding system caused a similar seed set regardless of the environment. First flowering was later and fruit set higher in the interior. We argue that time of first flower influenced the fruit set of Anadenathera. Edge and isolated trees started to flower earlier as a response to microclimatic conditions—mainly temperature—reducing the fruit set. Predispersal seed predation was lower among pasture trees. Conversely, we found seedlings only on the edge and in the interior of cerrado, suggesting that the pasture was of poor quality habitat for Anadenanthera recruitment. Isolation affected the plant size structure and reproduction of Anadenanthera trees. Studies comparing plant phenology under contrasting environmental conditions may offer clues on how global change may affect plant reproduction in the tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    Article  Google Scholar 

  • Aizen MA, Feisinger P (1994) Forest fragmentation, pollination and plant reproduction in a Chaco dry forest, Argentina. Ecology 75:330–351

    Article  Google Scholar 

  • Alberti LF, Morellato LPC (2008) Influência da abertura de trilhas antrópicas e clareiras naturais na fenologia reprodutiva de Gymnanthes concolor (Spreng.) Müll. Arg. (Euphorbiaceae). Rev Bras Bot 31:53–59

    Article  Google Scholar 

  • Aldrich PR, Hamrick JL (1998) Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science 281:103–105

    Article  CAS  Google Scholar 

  • Augspurger CK (1983) Phenology, synchrony, and fruit set of six neotropical shrubs. Biotropica 15:257–267

    Article  Google Scholar 

  • Burgess VJ, Nelly D, Robertson AW, Ladley JJ (2006) Positive effects of forest edges on plant reproduction: literature review and a case study of bee visitation flowers of Peraxilla tetrapetala (Loranthaceae). N Z J Ecol 30:179–190

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Camargo MGG, Souza RM, Reys P, Morellato LPC (2011) Effects of environmental conditions associated to the cardinal orientation on the reproductive phenology of the cerrado savanna tree Xylopia aromatica (Annonaceae). Ann Acad Bras Cienc 83:1007–1020

    Article  Google Scholar 

  • Caraballo-Ortiz MA, Santiago-Valentín E, Carlo TA (2011) Flower number and distance to neighbours affect the fecundity of Goetzea elegans (Solanaceae). J Trop Ecol 27:521–528

    Article  Google Scholar 

  • Cascante A, Quesada M, Lobo JA, Fuchs EJ (2002) Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conserv Biol 16:137–147

    Article  Google Scholar 

  • Clark JS, Beckage B, Camill P, Cleveland B, Hille JRL, Lichter J, McLachlan J, Mohan J, Wyckoff P (1999) Interpreting recruitment limitation in forests. Am J Bot 86:1–16

    Article  CAS  Google Scholar 

  • Coutinho LM (1990) Fire in the ecology of Brazilian cerrado. In: Goldammer JG (ed) Fire in the tropical biota. Springer, Berlin

    Google Scholar 

  • Cramer VA, Hobbs RJ, Standish RJ (2008) What’s new about old fields? Land abandonment and ecosystem assembly. TREE 23:104–112

    Google Scholar 

  • Cunningham SA (2000) Depressed pollination in habitat fragments causes low fruit set. Proc R Soc B 267:1149–1152

    Article  CAS  Google Scholar 

  • Dick CW (2001) Genetic rescue of remnant tropical trees by an alien pollinator. Proc R Soc B 268:2391–2396

    Article  CAS  Google Scholar 

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  • Durigan G, Siqueira MF, Franco GADC (2007) Threats to the cerrado remnants of the state of São Paulo, Brazil. Sci Agric 64:355–363

    Article  Google Scholar 

  • Ehrlén J, Münzbergová Z (2009) Timing of flowering: opposed selection on different fitness components and trait covariation. Am Nat 173:819–830

    Article  Google Scholar 

  • Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. TREE 22:432–439

    Google Scholar 

  • Fleury M, Galetti M (2006) Forest fragment size and microhabitat effects on palm seed predation. Biol Conserv 131:1–13

    Article  Google Scholar 

  • Fuchs EJ, Lobo JA, Quesada M (2003) Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns on the tropical dry forest tree, Pachira quinata (Bombacaceae). Conserv Biol 17:149–157

    Article  Google Scholar 

  • Furley PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Glob Ecol Biogeogr 8:223–241

    Article  Google Scholar 

  • Ghazoul J, Liston KA, Boyle TJB (1998) Disturbance-induced density-dependent seed set in Shorea siamensis (Dipterocarpaceae), a tropical forest tree. J Ecol 86:462–473

    Article  Google Scholar 

  • Gomez JM (1993) Phenotypic selection on flowering synchrony in a high mountain plant, Hormathophylla spinosa (Cruciferae). J Ecol 81:605–613

    Article  Google Scholar 

  • Gottsberger G, Silberbauer-Gottsberger I (2006) Life in the Cerrado: a South American tropical seasonal ecosystem. Reta, Ulm

    Google Scholar 

  • Guimarães PR Jr, Cogni R (2002) Seed cleaning of Cupania vernalis (Sapindaceae) by ants: edge effects in a highland forest in south-east Brazil. J Trop Ecol 18:303–307

    Article  Google Scholar 

  • Hagen M, Kissling WD, Rasmussen C, Aguiar MAM, Brown LE, Carstensen DW, Alves-dos-Santos I, Dupont YL, Edwards FK, Genini J, Guimarães PR Jr, Jenkins GB, Jordano P, Naiser-Bunbury CN, Ledger ME, Maia KP, Marquitti FMD, Mclaughlin Ó, Morellato LPC, O’Gorman EJ, Trojelsgaard K, Tylianakis JM, Vidal MM, Woodward G, Olesen JM (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89–210

    Article  Google Scholar 

  • Harvey CA, Haber WA (1999) Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agrofor Syst 44:37–68

    Google Scholar 

  • Herrerias-Diego Y, Quesada M, Stoner KE, Lobo JA (2006) Effects of forest fragmentation on phenological patterns and reproductive success of the tropical dry forest tree Ceiba aesculifolia. Conserv Biol 20:1111–1120

    Article  Google Scholar 

  • Herrerias-Diego Y, Quesada M, Stoner KE, Lobo JA, Hernandez-Flores Y, Montoya GS (2008) Effect of forest fragmentation on fruit and seed predation of the tropical dry forest tree Ceiba aesculifolia. Biol Conserv 141:241–248

    Article  Google Scholar 

  • Jardim AVF, Batalha MA (2009) Dispersal syndromes related to edge distance in cerrado sensu stricto fragments of central-western Brazil. Braz Arch Biol Technol 52:1167–1177

    Article  Google Scholar 

  • Kappos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5:173–185

    Article  Google Scholar 

  • Kato E, Hiura T (1999) Fruit set in Styrax obassia (Styracaceae): the effect of light availability, display size and local floral density. Am J Bot 86:495–501

    Article  CAS  Google Scholar 

  • Köppen W (1948) Climatologia: con un estudio de los climas de la tierra. FCE, México

    Google Scholar 

  • Kutt AS, Woinarski JCZ (2007) The effects of grazing and fire on vegetation and the vertebrate assemblage in a tropical savanna woodland in north-eastern Australia. J Trop Ecol 23:95–106

    Article  Google Scholar 

  • Lopes AV, Girão LC, Santos BA, Peres CA, Tabarelli M (2009) Long-term erosion of tree reproductive trait diversity in edge-dominated Atlantic forest fragments. Biol Conserv 142:1154–1165

    Article  Google Scholar 

  • Mahoro S (2002) Individual flowering schedule, fruit set, and flower and seed predation in Vaccinium hirtum Thunb. (Ericaceae). Can J Bot 80:82–92

    Article  Google Scholar 

  • Mendonza I, Gómez-Aparicio L, Zamora R, Mátias L (2009) Recruitment limitation of forest communities in a degraded Mediterranean landscape. J Veg Sci 20:367–376

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Asa AA, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli O, Peñuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F, Zach S, Zust A (2006) European phonological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Morellato LPC, Gressler E, Camargo MGG (2013) A review of plant phenology in South and Central America. In: Schwartz MD (ed) Phenology: an integrative environmental science, 2nd edn. Springer, New York, pp 91–113

    Chapter  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests, implications for conservation. TREE 10:58–62

    CAS  Google Scholar 

  • Naito Y, Kanzaki M, Iwata H, Obayashi K, Lee SL, Muhammad N, Okuda T, Tsumura Y (2008) Density-dependent selfing and its effects on seed performance in a tropical canopy tree species, Shorea acuminata (Dipterocarpaceae). For Ecol Manag 256:375–383

    Article  Google Scholar 

  • Ollerton J, Lack A (1998) Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae). Plant Ecol 139:35–47

    Article  Google Scholar 

  • Porenski LM (2011) When edges meet: interacting edge effects in an African savanna. J Ecol 99:923–934

    Article  Google Scholar 

  • Quesada M, Stoner KE, Rosas-Guerrero V, Palacios-Guevara C, Lobo JA (2003) Effects of habitat disruption on the activity of nectarivorous bats (Chiroptera: Phyllostomidae) in a dry tropical forest: implications for the reproductive success of the neotropical tree Ceiba grandiflora. Oecologia 135:400–406

    Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.r-project.org

    Google Scholar 

  • Ramos FN, Santos FAM (2006) Floral visitors and pollination of Psycotria tenuinervis (Rubiaceae): distance from anthropogenic and natural edges of an Atlantic Forest Fragment. Biotropica 38:383–389

    Article  Google Scholar 

  • Ratchke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214

    Article  Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  • Restrepo C, Vargas A (1999) Seeds and seedlings of two neotropical montane understory shrubs respond differently to anthropogenic edges and treefall gaps. Oecologia 119:419–426

    Article  Google Scholar 

  • Restrepo C, Gomez N, Heredia S (1999) Anthropogenic edges, treefall gaps, and fruit–frugivore interactions in a neotropical montane forest. Ecology 80:668–685

    Google Scholar 

  • Reys P, Camargo MGG, Grombone-Guaratini MT, Teixeira AP, Assis MA, Morellato LPC (2013) Estrutura e composição florística entre borda e interior de um cerrado sensu stricto e sua importância para propostas de restauração ecológica. Hoehnea (in press)

  • Rocha OJ, Aguilar G (2001) Reproductive biology of the dry forest tree Enterolobium ciclocarpum (Guanacaste) in Costa Rica: a comparison between trees left in pastures and trees in continuous forest. Am J Bot 88:1607–1614

    Article  CAS  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Saunders DA, Smith GT, Ingram JA, Forrester RI (2003) Changes in a remnant of salmon gum Eucalyptus salmonophloia and york gum E. loxophleba woodland, 1978 to 1997. Implications for woodland conservation in the wheat-sheep regions for Australia. Biol Conserv 110:245–256

    Article  Google Scholar 

  • Sharma MV, Shaanker RU, Leather SR, Vasudeva R, Shivanna KR (2011) Floral resources, pollinators and fruiting in a threatened tropical deciduous tree. J Plant Ecol 4:259–267

    Article  Google Scholar 

  • Spooner P, Lunt I, Robinson W (2002) Is fencing enough? The short-term effects of stock exclusion in remnant grassy woodlands in southern NSW. Ecol Manag Restor 3:117–126

    Article  Google Scholar 

  • Staggemeier VG, Morellato LPC (2011) Reproductive phenology of coastal plain Atlantic forest vegetation: comparisons from seashore to foothills. Int J Biometeorol 55:843–854

    Article  Google Scholar 

  • Thomas SC (1996) Relative size at reproductive onset in rain forest trees: a comparative analysis of 37 Malaysian species. Oikos 76:145–154

    Article  Google Scholar 

  • Traveset A (1991) Pre-dispersal seed predation in Central American Acacia farnesiana: factors affecting the abundance of co-occurring bruchid beetles. Oecologia 87:570–576

    Article  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer MJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    CAS  Google Scholar 

  • Zar JH (1996) Bioestatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

  • Zietsman J, Dreyer LL, Esler KJ (2008) Reproductive biology and ecology of selected rare and endangered Oxalis L. (Oxalidaceae) plant species. Biol Conserv 141:1475–1483

    Article  Google Scholar 

Download references

Acknowledgments

We thank the owners of the farm and Instituto Arruda Botelho for their permission and support for the development of this research; S. Buzato, F.N. Ramos and I. Mendonza for comments on early versions of this manuscript; CAPES (Coordenação de Ensino Superior) for provision of a Masters scholarship to E.A.A. and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the research productivity fellowship and grant to L.P.C.M. and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financial support. The Phenology Laboratory and Plant Phenology and Seed Dispersal Group are supported by FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Anversa Athayde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.65 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athayde, E.A., Morellato, L.P.C. Anthropogenic edges, isolation and the flowering time and fruit set of Anadenanthera peregrina, a cerrado savanna tree. Int J Biometeorol 58, 443–454 (2014). https://doi.org/10.1007/s00484-013-0727-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0727-y

Keywords

Navigation