Skip to main content
Log in

The influence of plants on atmospheric methane in an agriculture-dominated landscape

International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The primary objective of this study was to clarify the influence of crop plants on atmospheric methane (CH4) in an agriculture-dominated landscape in the Upper Midwest of the United States. Measurements were carried out at two contrasting scales. At the plant scale, CH4 fluxes from soybean and corn plants were measured with a laser-based plant chamber system. At the landscape scale, the land surface flux was estimated with a modified Bowen ratio technique using measurements made on a tall tower. The chamber data revealed a diurnal pattern for the plant CH4 flux: it was positive (an emission rate of 0.4 ± 0.1 nmol m−2 s−1, average of soybean and corn, in reference to the unit ground area) during the day, and negative (an uptake rate of −0.8 ± 0.8 nmol m−2 s−1) during the night. At the landscape scale, the flux was estimated to be 14.8 nmol m−2 s−1 at night and highly uncertain during the day, but the available references and the flux estimates from the equilibrium methods suggested that the CH4 flux during the entire observation period was similar to the estimated nighttime flux. Thus, soybean and corn plants have a negligible role in the landscape-scale CH4 budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Adviento-Borbe MAA, Haddix ML, Binder DL, Walters DT, Dobermann A (2007) Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Glob Chang Biol 13:1972–1988

    Article  Google Scholar 

  • Alluvione F, Halvorson AD, Del Grosso SJ (2009) Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems. J Environ Qual 38:2023–2033

    Article  CAS  Google Scholar 

  • Baker JM, Griffis TJ (2005) Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques. Agric For Meteorol 128:163–177

    Article  Google Scholar 

  • Bavin TK, Griffis TJ, Baker JM, Venterea RT (2009) Impact of reduced tillage and cover cropping on the greenhouse gas budget of amaize/soybean rotation ecosystem. Agric Ecosyst Environ 134:234–242

    Google Scholar 

  • Beerling DJ, Gardiner T, Leggett G, McLeod A, Quick WP (2008) Missing methane emissions from leaves of terrestrial plants. Glob Chang Biol 14:1821–1826

    Article  Google Scholar 

  • Bowling DR, Miller JB, Rhodes ME, Burns SP, Monson RK, Baer D (2009) Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeosciences 6:1311–1324

    Article  CAS  Google Scholar 

  • Bruhn D, Mikkelsen TN, Willats WGT, Ambus P (2009)Effects of temperature, ultraviolet radiation and pectin methylesterase on aerobic methane release from plant material. PlantBiol 11:43–48, doi:10.1111/j.1438-8677.2009.00202.x

    Google Scholar 

  • Bruhn D, Moller IM, Mikkelsen TN, Ambus P (2012) Terrestrial plant methane production and emission. Physiol Plant 144:201–209

    Article  CAS  Google Scholar 

  • Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41:4032–4037

    Article  CAS  Google Scholar 

  • Dueck T, van der Werf A (2008) Are plants precursors for methane? New Phytol 178:693–695

    Article  Google Scholar 

  • Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstappen F, Bouwmeester H, Voesenek L, van der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a C-13-labelling approach. New Phytol 175:29–35

    Article  CAS  Google Scholar 

  • Ferretti DF, Miller JB, White JWC, Lassey KR, Lowe DC, Etheridge DM (2007) Stable isotopes provide revised global limits of aerobic methane emissions from plants. Atmos Chem Phys 7:237–241

    Article  CAS  Google Scholar 

  • Griffis TJ, Lee X, Baker JM, Sargent SD, King JY (2005) Feasibility of quantifying ecosystem-atmosphere (COO)-O-18-O-16 exchange using laser spectroscopy and the flux-gradient method. Agric For Meteorol 135:44–60

    Article  Google Scholar 

  • Griffis TJ, Baker JM, Sargent SD, Erickson M, Corcoran J, Chen M, Billmark K (2010) Influence of C-4 vegetation on (CO2)-C-13 discrimination and isoforcing in the upper Midwest, United States. Glob Biogeochem Cycles 24:16

    Article  Google Scholar 

  • Hendriks DMD, van Huissteden J, Dolman AJ (2010) Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agric For Meteorol 150:757–774

    Article  Google Scholar 

  • Houweling S, Rockmann T, Aben I, Keppler F, Krol M, Meirink JF, Dlugokencky EJ, Frankenberg C (2006) Atmospheric constraints on global emissions of methane from plants. Geophys Res Lett 33, L15821

    Article  Google Scholar 

  • Jacinthe PA, Lal R (2003) Nitrogen fertilization of wheat residue affecting nitrous oxide and methane emission from a central Ohio Luvisol. Biol Fertil Soils 37:338–347

    CAS  Google Scholar 

  • Johnson JMF, Archer D, Barbour N (2010) Greenhouse gas emission from contrasting management scenarios in the northern corn belt. Soil Sci Soc Am J 74:396–406

    Article  CAS  Google Scholar 

  • Karlen DL, Duffy MD, Colvin TS (1995) Nutrient, labor, energy, and economic evaluations of two farming systems in Iowa. J Prod Agric 8:540–546

    Article  Google Scholar 

  • Kelliher FM, Reisinger AR, Martin RJ, Harvey MJ, Price SJ, Sherlock RR (2002) Measuring nitrous oxide emission rate from grazed pasture using Fourier-transform infrared spectroscopy in the nocturnal boundary layer. Agric For Meteorol 111:29–38

    Article  Google Scholar 

  • Keppler F, Hamilton JTG, Brass M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  CAS  Google Scholar 

  • Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttila AM, Rockmann T, Schnitzler JP (2009) Methane formation in aerobic environments. Environ Chem 6:459–465

    Article  CAS  Google Scholar 

  • Kirschbaum MUF, Walcroft A (2008) No detectable aerobic methane efflux from plant material, nor from adsorption/desorption processes. Biogeosciences 5:1551–1558

    Article  CAS  Google Scholar 

  • Kroon PS, Hensen A, Jonker HJJ, Zahniser MS, van’t Veen WH, Vermeulen AT (2007) Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements. Biogeosciences 4:715–728

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Lin JC, Gerbig C, Wofsy SC, Andrews AE, Daube BC, Davis KJ, Grainger CA (2003) A near-field tool for simulating the upstream influence of atmospheric observations: the Stochastic Time-Inverted Lagrangian Transport (STILT) model. J Geophys Res-Atmos 108(D16):4493

    Article  Google Scholar 

  • Liu LL, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12:1103–1117

    Article  CAS  Google Scholar 

  • Logan JA, Prather MJ, Wofsy JC, McElroy MB (1981) Tropospheric chemistry: a global perspective. J Geophys Res 86:7210–7254

    Google Scholar 

  • Long KD, Flanagan LB, Cai T (2010) Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance. Glob Chang Biol 16:2420–2435

    Google Scholar 

  • McLeod AR, Fry SC, Loake GJ, Messenger DJ, Reay DS, Smith KA, Yun BW (2008) Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol 180:124–132

    Article  CAS  Google Scholar 

  • Meyers TP, Hall ME, Lindberg SE, Kim K (1996) Use of the modified Bowen-ratio technique to measure fluxes of trace gases. Atmos Environ 30:3321–3329

    Article  CAS  Google Scholar 

  • Mosher BW, Czepiel PM, Harriss RC, Shorter JH, Kolb CE, McManus JB, Allwine E, Lamb BK (1999) Methane emissions at nine landfill sites in the northeastern United States. Environ Sci Technol 33:2088–2094

    Article  CAS  Google Scholar 

  • Mosier AR, Halvorson AD, Reule CA, Liu XJJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual 35:1584–1598

    Article  CAS  Google Scholar 

  • Nakagawa F, Tsunogai U, Komatsu DD, Yamada K, Yoshida N, Moriizumi J, Nagamine K, Iida T, Ikebe Y (2005) Automobile exhaust as a source of C-13- and D-enriched atmospheric methane in urban areas. Org Geochem 36:727–738

    Article  CAS  Google Scholar 

  • Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, Lopez-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Sriskantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc B Biol Sci 276:1347–1354

    Article  CAS  Google Scholar 

  • Omonode RA, Vyn TJ, Smith DR, Hegymegi P, Gal A (2007) Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations. Soil Tillage Res 95:182–195

    Article  Google Scholar 

  • Parsons AJ, Newton PCD, Clark H, Kelliher FM (2006) Scaling methane emissions from vegetation. Trends Ecol Evol 21:423–424

    Article  Google Scholar 

  • Pattey E, Strachan IB, Desjardins RL, Edwards GC, Dow D, MacPherson JI (2006) Application of a tunable diode laser to the measurement of CH4 and N2O fluxes from field to landscape scale using several micrometeorological techniques. Agric For Meteorol 136:222–236

    Article  Google Scholar 

  • Qaderi MM, Reid DM (2011) Stressed crops emit more methane despite the mitigating effects of elevated carbon dioxide. Funct Plant Biol 38:97–105

    Article  CAS  Google Scholar 

  • Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Damste JSS, Lamers LPM, Roelofs JGM, den Camp HJMO, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436(7054):1153–1156

    Article  CAS  Google Scholar 

  • Shurpali NJ, Verma SB (1998) Micrometeorological measurements of methane flux in a Minnesota peatland during two growing seasons. Biogeochemistry 40:1–15

    Article  CAS  Google Scholar 

  • Shurpali NJ, Verma SB, Clement RJ, Billesbach DP (1993) Seasonal distribution of methane flux in a Minnesota peatland measured by eddy-correlation. J Geophys Res Atmos 98:20649–20655

    Article  Google Scholar 

  • Smeets C, Holzinger R, Vigano I, Goldstein AH, Rockmann T (2009) Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos Chem Phys 9:8365–8375

    Article  CAS  Google Scholar 

  • Sundqvist E, Crill P, Mölder M, Vestin P, Lindroth A (2012) Atmospheric methane removal by boreal plants. Geophys Res Lett 39:L21806

    Article  Google Scholar 

  • Suwanwaree P, Robertson GP (2005) Methane oxidation in forest, successional, and no-till agricultural ecosystems: Effects of nitrogen and soil disturbance. Soil Sci Soc Am J 69:1722–1729

    Article  CAS  Google Scholar 

  • United States Department of Agriculture (2009) US Summary and State Data 2007 Census. Rep Agric 1:7–16

    Google Scholar 

  • Ussiri DAN, Lal R, Jarecki MK (2009) Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Tillage Res 104:247–255

    Article  Google Scholar 

  • Vigano I, van Weelden H, Holzinger R, Keppler F, McLeod A, Rockmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5:937–947

    Article  CAS  Google Scholar 

  • Vigano I, Holzinger R, Rockmann T, van Dijk A, Keppler F, Greule M, Brand WA, van Weelden H, van Dongen J (2009) UV light induces methane emission from plant biomass: mechanism and isotope studies. Geochim Cosmochim Acta 73:A1382–A1382

    Article  Google Scholar 

  • Wang YS, Xue M, Zheng XH, Ji BM, Du R, Wang YF (2005) Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere 58:205–215

    Article  CAS  Google Scholar 

  • Wang ZP, Han XG, Wang GG, Song Y, Gulledge J (2008) Aerobic methane emission from plants in the Inner Mongolia steppe. Environ Sci Technol 42:62–68

    Article  CAS  Google Scholar 

  • Wang ZP, Gulledge J, Zheng JQ, Liu W, Li LH, Han XG (2009) Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosciences 6:615–621

    Article  CAS  Google Scholar 

  • Wang ZP, Keppler F, Greule M, Hamilton JTG (2011) Non-microbial methane emissions from fresh leaves: effects of physical wounding and anoxia. Atmos Environ 45:4915–4921

    Article  CAS  Google Scholar 

  • Werner C, Davis K, Bakwin P, Yi CX, Hurst D, Lock L (2003) Regional-scale measurements of CH4 exchange from a tall tower over a mixed temperate/boreal lowland and wetland forest. Glob Chang Biol 9:1251–1261

    Article  Google Scholar 

  • Wishkerman A, Greiner S, Ghyczy M, Boros M, Rausch T, Lenhart K, Keppler F (2011) Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase. Plant Cell Environ 34:457–464

    Article  CAS  Google Scholar 

  • Zhang X (2013) Improving regional-scale greenhouse gas inventories in an agriculturedominated landscape using a multi-scale approach. PhD Dissertation, Yale University

  • Zhao CF, Andrews AE, Bianco L, Eluszkiewicz J, Hirsch A, MacDonald C, Nehrkorn T, Fischer ML (2009) Atmospheric inverse estimates of methane emissions from Central California. J Geophys Res Atmos 114, D16302

    Article  Google Scholar 

  • Zimnoch M, Godlowska J, Necki JM, Rozanski K (2010) Assessing surface fluxes of CO2 and CH4 in urban environment: a reconnaissance study in Krakow, Southern Poland. Tellus Ser B Chem Phys Meteorol 62:573–580

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the University of Minnesota UMore Park for use of the facilities. Funding was provided by the Ministry of Education of China (grant PCSIRT), the Rice Family Foundation, the Yale Institute for Biospheric Studies, and USDA NIFA/2010-65112-20528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Lee, X., Griffis, T.J. et al. The influence of plants on atmospheric methane in an agriculture-dominated landscape. Int J Biometeorol 58, 819–833 (2014). https://doi.org/10.1007/s00484-013-0662-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0662-y

Keywords

Navigation