International Journal of Biometeorology

, Volume 58, Issue 2, pp 137–148 | Cite as

Climate change and thermal comfort in Hong Kong

ICB 2011 - Students / New Professionals

Abstract

Thermal comfort is a major issue in cities and it is expected to change in the future due to the changing climate. The objective of this paper is to use the universal thermal comfort index (UTCI) to compare the outdoor thermal comfort in Hong Kong in the past (1971–2000) and the future (2046–2065 and 2081–2100). The future climate of Hong Kong was determined by the general circulation model (GCM) simulations of future climate scenarios (A1B and B1) established by the Intergovernmental Panel on Climate Change (IPCC). Three GCMs were chosen, GISS-ER, GFDL-CM2.1 and MRI-CGCM2.3.2, based on their performance in simulating past climate. Through a statistical downscaling procedure, the future climatic variables were transferred to the local scale. The UTCI is calculated by four predicted climate variables: air temperature, wind speed, relative humidity and solar radiation. After a normalisation procedure, future UTCI profiles for the urban area of Hong Kong were created. Comparing the past UTCI (calculated by observation data) and future UTCI, all three GCMs predicted that the future climate scenarios have a higher mode and a higher maximum value. There is a shift from ‘No Thermal Stress’ toward ‘Moderate Heat Stress’ and ‘Strong Heat Stress’ during the period 2046–2065, becoming more severe for the later period (2081–2100). Comparing the two scenarios, B1 exhibited similar projections in the two time periods whereas for A1B there was a significant difference, with both the mode and maximum increasing by 2 °C from 2046–2065 to 2081–2100.

Keywords

Thermal comfort Future climate scenario General circulation model Statistical downscaling Universal thermal comfort index 

References

  1. Blazejczyk K, Bluestein M, Ducharme M, Fiala D, Havenith G, Höppe P, Holmer I, Nicol F, Osczevski R, Steadman R, Jendritzky G, deDear R (2010a) Exective summary—the Universal Thermal Climate Index (UTCI) for assessing the thermal environment of the human being. COST Action 730. COST European Cooperation in Scientific and Technical ResearchGoogle Scholar
  2. Blazejczyk K, Broede P, Fiala D, Havenith G, Holmér I, Jendritzky G, Kampmann B, Kunert A (2010b) Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Misc Geogr 14:91–102Google Scholar
  3. Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56(3):515–535. doi:10.1007/s00484-011-0453-2 CrossRefGoogle Scholar
  4. Cheng V, Ng E, Chan C, Givoni B (2012) Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. Int J Biometeorol 56(1):43–56CrossRefGoogle Scholar
  5. Das L, Lohar D (2005) Construction of climate change scenarios for a tropical monsoon region. Clim Res 30(1):39–52CrossRefGoogle Scholar
  6. Davis RE, Knappenberger PC, Michaels PJ, Novicoff WM (2004) Seasonality of climate-human mortality relationships in US cities and impacts of climate change. Clim Res 26(1):61–76CrossRefGoogle Scholar
  7. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS (2006) GFDL’s CM2 Global Coupled Climate Models. Part I: formulation and simulation characteristics. J Climate 19(5):643–674CrossRefGoogle Scholar
  8. Ginn WL, Lee TC, Chan KY (2010) Past and future changes in the climate of Hong Kong. Acta Meteorol Sin 24(2):163–175Google Scholar
  9. Google Maps (2010) Hong Kong Observatory, Hong KongGoogle Scholar
  10. Gosling S, McGregor G, Lowe J (2012) The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates. Clim Chang 112(2):217–231. doi:10.1007/s10584-011-0211-9 CrossRefGoogle Scholar
  11. Hong Kong Observatory (2012) Climatological normals and extremes. http://www.weather.gov.hk/cis/normal_e.htm
  12. Hoppe P (2002) Different aspects of assessing indoor and outdoor thermal comfort. Energ Buildings 34(6):661–665CrossRefGoogle Scholar
  13. IPCC (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  14. IPCC-TGICA (2007) General guidelines on the use of scenario data for climate impact and adaptation assessment. Version 2. Prepared by T.R. Carter on behalf of the Intergovernmental Panel on Climate Change, Task Group on Data and Scenario Support for Impact and Climate Assessment, 66Google Scholar
  15. Jendritzky G, de Dear R, Havenith G (2012) UTCI—Why another thermal index? Int J Biometeorol 56(3):421–428. doi:10.1007/s00484-011-0513-7 CrossRefGoogle Scholar
  16. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Van Den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267CrossRefGoogle Scholar
  17. Lee TC, Leung WH, Ginn EW (2008) Rainfall projections for Hong Kong based on the IPCC Fourth Assessment Report. Hong Kong Meteor Soc Bull 18Google Scholar
  18. Lee TC, Chan KY, Ginn WL (2011) Projection of extreme temperatures in Hong Kong in the 21st century. Acta Meteorol Sin 25(1):1–20CrossRefGoogle Scholar
  19. Leung YK, Wu MC, Yeung KK, Leung WM (2007) Temperature projections in Hong Kong based on IPCC Fourth Assessment Report. Hong Kong Meteor Soc Bull 17Google Scholar
  20. Lim YK, Cocke S, Shin DW, Schoof JT, LaRow TE, O’Brien JJ (2009) Downscaling large-scale NCEP CFS to resolve fine-scale seasonal precipitation and extremes for the crop growing seasons over the southeastern United States. Clim Dynam 1–23Google Scholar
  21. Matzarakis A, Endler C (2010) Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany. Int J Biometeorol 54(4):479–483CrossRefGoogle Scholar
  22. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments - application of the RayMan model. Int J Biometeorol 51(4):323–334CrossRefGoogle Scholar
  23. Matzarakis A, De Rocco M, Najjar G (2009) Thermal bioclimate in Strasbourg–the 2003 heat wave. Theor Appl Climatol 98(3–4):209–220CrossRefGoogle Scholar
  24. Matzarakis A, Muthers S, Koch E (2011) Human biometeorological evaluation of heat-related mortality in Vienna. Theor Appl Climatol 105(1–2):1–10CrossRefGoogle Scholar
  25. Najac J, Boé J, Terray L (2009) A multi-model ensemble approach for assessment of climate change impact on surface winds in France. Clim Dynam 32(5):615–634CrossRefGoogle Scholar
  26. Ng E (2012) Towards planning and practical understanding of the need for meteorological and climatic information in the design of high-density cities: a case-based study of Hong Kong. Int J Climatol 32(4):582–598. doi:10.1002/Joc.2292 CrossRefGoogle Scholar
  27. O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690CrossRefGoogle Scholar
  28. Oliveira S, Andrade H (2007) An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. Int J Biometeorol 52(1):69–84CrossRefGoogle Scholar
  29. Park S, Tuller SE (2011) Comparison of human radiation exchange models in outdoor areas. Theor Appl Climatol 105(3–4):357–370CrossRefGoogle Scholar
  30. Paul S, Liu CM, Chen JM, Lin SH (2008) Development of a statistical downscaling model for projecting monthly rainfall over East Asia from a general circulation model output. J Geophys Res-Atmos 113(D15):10.1029/2007jd009472 CrossRefGoogle Scholar
  31. Sailor DJ, Smith M, Hart M (2008) Climate change implications for wind power resources in the Northwest United States. Renew Energ 33(11):2393–2406CrossRefGoogle Scholar
  32. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu YY, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao MS (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Climate 19(2):153–192CrossRefGoogle Scholar
  33. Siu L, Hart M (2012) Quantifying urban heat island intensity in Hong Kong SAR, China. Environ Monit Assess. doi:10.1007/s10661-012-2876-6
  34. Spagnolo J, de Dear R (2003a) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Environ 38(5):721–738CrossRefGoogle Scholar
  35. Spagnolo JC, de Dear RJ (2003b) A human thermal climatology of subtropical Sydney. Int J Climatol 23:1383–1395. doi:10.1002/Joc.939 CrossRefGoogle Scholar
  36. Spak S, Holloway T, Lynn B, Goldberg R (2007) A comparison of statistical and dynamical downscaling for surface temperature in North America. J Geophys Res-Atmos 112(D8):10.1029/2005jd006712 CrossRefGoogle Scholar
  37. Stewart ID, Oke TR (2009) Classifying urban climate field sites by “local climate zones”: the case of Nagano, Japan. Paper presented at the The seventh International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009Google Scholar
  38. Thorsson S, Lindberg F, Bjorklund J, Holmer B, Rayner D (2011) Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. Int J Climatol 31(2):324–335. doi:10.1002/Joc.2231 CrossRefGoogle Scholar
  39. Tomozeiu R, Cacciamani C, Pavan V, Morgillo A, Busuioc A (2007) Climate change scenarios for surface temperature in Emilia-Romagna (Italy) obtained using statistical downscaling models. Theor Appl Climatol 90(1–2):25–47CrossRefGoogle Scholar
  40. Vaneckova P, Hart MA, Beggs PJ, de Dear RJ (2008) Synoptic analysis of heat-related mortality in Sydney, Australia, 1993–2001. Int J Biometeorol 52(6):439–451CrossRefGoogle Scholar
  41. Wilby RL, Carter TR, Zorita E, Timbal B, Whetton P, Mearns L (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf
  42. Yan YY (2000) The influence of weather on human mortality in Hong Kong. Soc Sci Med 50(3):419–427CrossRefGoogle Scholar
  43. Yan YY (2009) Seasonal variations of mortality in Hong Kong. Biol Rhythm Res 40(5):425–431CrossRefGoogle Scholar
  44. Yip KM, Leung YK, Yeung KH (2007) Long-term Trend in thermal index and its impact on mortality in Hong Kong. Paper presented at the International Conference on Climate Change, Hong Kong, China, 29–31 May 2007Google Scholar
  45. Yukimoto S, Noda A, Kitoh A, Hosaka M, Yoshimura H, Uchiyama T, Shibata K, Arakawa O, Kusunoki S (2006) Present-Day Climate and Climate Sensitivity in the Meteorological Research Institute Coupled GCM Version 2.3 (MRI-CGCM2.3). J Meteorol Soc Jpn 84(2):333–363CrossRefGoogle Scholar

Copyright information

© ISB 2012

Authors and Affiliations

  • Chi Shing Calvin Cheung
    • 1
  • Melissa Anne Hart
    • 1
    • 2
  1. 1.Department of GeographyUniversity of Hong KongHong Kong SARChina
  2. 2.Australian Research Council Centre of Excellence for Climate System ScienceThe University of New South WalesSydneyAustralia

Personalised recommendations