Skip to main content

Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

An Erratum to this article was published on 08 June 2012

Abstract

We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002–2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3–4 September 2002) and period B (6–7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002–2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Arritt RW, Clark CA, Goggi S, Sanchez HL, Westgate ME, Riese JM (2007) Lagrangian numerical simulations of canopy air flow effects on maize pollen dispersal. Field Crop Res 102:151–162

    Article  Google Scholar 

  • Aylor DE (2002) Settling speed of corn (Zea mays) pollen. J Aerosol Sci 33:1601–1607

    Article  CAS  Google Scholar 

  • Baklanov A, Grisogono B (2007) Atmospheric boundary layers: nature, theory and applications to environmental modelling and security. Springer, New York

    Google Scholar 

  • Belmonte J, Alarcon M, Avila A, Scialabba E, Pino D (2008) Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). Int J Biometeorol 52:675–687. doi:10.1007/s00484-008-0160-9

    Article  CAS  Google Scholar 

  • Belušić D, Strelec Mahović N (2009) Detecting and following atmospheric disturbances with a potential to generate meteotsunamis in the Adriatic. Phys Chem Earth 34:918–927

    Article  Google Scholar 

  • Brunet Y, Foueillassar F, Audran A, Garrigou D, Dayau S, Tardieu L (2003) Evidence for long-range transport of viable maize pollen. In: Boelt B (ed) Proceedings of the 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops. Helsingør, Denmark, 13–14 November

  • Dahl A, Strandhede S-O, Wihl J-A (1999) Ragweed-An allergy risk in Sweden? Aerobiologia 15:293–297

    Article  Google Scholar 

  • De Morton J, Bye J, Pezza A, Newbigin E (2011) On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia. Int J Biometeorol 55:613–622. doi:10.1007/s00484-010-0361-x

    Article  Google Scholar 

  • Fortezza F, Georgiadis T, Alberti L, Bonasoni P, Cavallini D, Giovanelli G, Ravegnani FA (1995) Numerical-simulation of the transport of surface ozone along a Mediterranean coastal area. Nuovo Cimento (C) 18:403–410

    Google Scholar 

  • Hrga I, Mitić B, Alegro A, Dragojlović D, Stjepanović B, Puntarić D (2010) Aerobiology of Sweet Chestnut (Castanea sativa Mill.) in North-West Croatia. Coll Antropol 34:501–507

    Google Scholar 

  • Izquierdo R, Belmonte J, Avila A, Alarcon M, Cuevas E, Alonso-Perez S (2011) Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). Int J Biometeorol 55:67–85

    Article  Google Scholar 

  • Jäger S (1991) Allergenic significance of Ambrosia (ragweed). In: D'Amato G, Spieksma FthM, Bonini S (eds) Allergenic pollens and pollinosis in Europe. Blackwell, Oxford, pp 125–127

    Google Scholar 

  • Jarosz N, Loubet B, Durand B, McCartney A, Foueillassar Z, Huber L (2003) Field measurements of airborne concentration and deposition rate of maize pollen. Agric For Meteorol 119:37–51

    Article  Google Scholar 

  • Jiménez MA, Mira A, Cuxart J, Luque A, Alonso S (2008) Verification of a clear-sky mesoscale simulation using satellite-derived surface temperatures. Mon Weather Rev 136:5148–5161. doi:10.1175/2008MWR2461.1

    Article  Google Scholar 

  • Kasprzyk I (2008) Non-native Ambrosia pollen in the atmosphere of Rzeszów (SE Poland); evaluation of the effects of weather conditions on daily concentrations and starting dates of the pollen seasons. Int J Biometeorol 52:341–351. doi:10.1007/s00484-007-0129-0

    Article  Google Scholar 

  • Kasprzyk I, Myszkowska D, Grewling Ł, Stach A, Šikoparija B, Skjøth CA, Smith M (2011) The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine. Int J Biometeorol 55:633–644. doi:10.1007/s00484-010-0376-3

    Article  Google Scholar 

  • Knox R (1993) Grass pollen, thunderstorms and asthma. Clin Exp Allergy 23:354–359

    Article  CAS  Google Scholar 

  • Köppen W (1931) Grundriss der Klimakunde (in German). De Gruyter, Berlin

    Google Scholar 

  • Lisac I (1984) The wind in Zagreb (A contribution to the knowledge of climate of the city of Zagreb, II). Geofizika 1:47–134

    Google Scholar 

  • Makjanić B (1977) A short description of the climate in Zagreb (in Croatian). Radovi-Geofizički Institut III serija, Zagreb; Zagreb:125–176

  • Makra L, Juhász M, Béczi R, Borsos E (2005) The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44:57–64

    Article  Google Scholar 

  • Makra L, Tombácz S, Bálint B, Sümeghy Z, Sánta T, Hirsch T (2008) Influences of meteorological parameters and biological and chemical air pollutants to the incidence of asthma and rhinitis. Clim Res 37:99–119. doi:10.3354/cr00752

    Article  Google Scholar 

  • Makra L, Sánta T, Matyasovszky I, Damialis A, Karatzas K, Bergmann KC, Vokou D (2010) Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. J Geophys Res 115:D24220. doi:10.1029/2010JD014743

    Article  Google Scholar 

  • Nitis T, Kitsiou D, Klaić ZB, Prtenjak MT, Moussiopoulos N (2005) The effects of basic flow and topography on the development of the sea breeze over a complex coastal environment. Q J R Meteorol Soc 131:305–328

    Article  Google Scholar 

  • Oke TR (1995) The heat island of the urban boundary layer: characteristics, causes and effects. In: Cermak JE, Davenport AG, Plate EJ, Viegas DX (eds) Wind climates in cities. Kluwer, Dordecht, pp 81–107

    Google Scholar 

  • Pérez-Landa G, Ciais P, Sanz MJ, Gioli B, Miglietta F, Palau JL, Gangoiti G, Millán MM (2007) Mesoscale circulations over complex terrain in the Valencia coastal region, Spain—Part 1: Simulation of diurnal circulation regimes. Atmos Chem Phys 7:1835–1849

    Article  Google Scholar 

  • Peternel R, Čulig J, Srnec L, Mitić B, Vukušić I, Hrga I (2005) Variation in ragweed (Ambrosia artemisiifolia L.) pollen concentration in central Croatia, 2002-2003. Ann Agric Environ Med 12:11–16

    Google Scholar 

  • Peternel R, Milanović SM, Srnec L (2008) Airborne ragweed (Ambrosia artemisiifolia L.) pollen content in the city of Zagreb and implications on pollen allergy. Ann Agric Environ Med 15:125–130

    Google Scholar 

  • Prtenjak MT, Viher M, Jurković J (2010) Sea-land breeze development during a summer bora event along the north-eastern Adriatic coast. Q J R Meteorol Soc 136:1554–1571. doi:10.1002/qj.649

    Article  Google Scholar 

  • Rich TCG (1994) Ragweeds (Ambrosia L.) in Britain. Grana 33:38–43

    Article  Google Scholar 

  • Rousseau DD, Duzer D, Etienne JL, Cambon G, Jolly D, Ferrier J, Schevin P (2004) Pollen record of rapidly changing air trajectories to the North Pole. J Geophys Res 109:D06116. doi:10.1029/2003JD003985

    Article  Google Scholar 

  • Šikoparija B, Smith M, Skjoth CA, Radišić M, Milkovska S, Šimić S, Brandt J (2009) The Pannonian plain as a source of Ambrosia pollen in the Balkans. Int J Biometeorol 53:263–272

    Article  Google Scholar 

  • Simpson JE (1994) Sea breeze, and local winds. Cambridge University Press, Cambridge

    Google Scholar 

  • Skamarock WC, Weisman ML (2009) The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon Weather Rev 137:488–494

    Article  Google Scholar 

  • Skjøth CA, Smith M, Šikoparija B, Stach A, Myszkowska D, Kasprzyk I, Radišić P, Stjepanović B, Hrga I, Apatini D, Magyar D, Páldy A, Ianovici N (2010) A method for producing airborne pollen source inventories: an example of Ambrosia (ragweed) on the Pannonian plain. Agric For Meteorol 150:1203–1210

    Article  Google Scholar 

  • Smith M, Skjøth CA, Myszkowska DAU, Puc M, Stach A, Balwierz Z, Chlopek K, Piotrowska K, Kasprzyk I, Brandt J (2008) Long-range transport of Ambrosia pollen to Poland. Agric For Meteorol 148:1402–1411

    Article  Google Scholar 

  • Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimaki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402

    Article  CAS  Google Scholar 

  • Stach A, Smith M, Skjoth CA, Brandt J (2007) Examining Ambrosia pollen episodes at Poznan (Poland) using back-tajectory analysis. Int J Biometeorol 51:275–286

    Article  CAS  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht

    Book  Google Scholar 

  • Traidl-Hoffmann C, Kasche A, Menzel A, Jakob T, Thiel M, Ring J, Behrendt H (2003) Impact of pollen on human health: more than allergen carriers? Int Arch Allergy Immunol 131:1–13

    Article  Google Scholar 

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New York

    Google Scholar 

  • Zaninović K, Gajić-Čapka M, Perčec Tadić M, Vučetić M, Milković J, Bajić A, Cindrić K, Cvitan L, Katušin Z, Kaučić D, Likso T, Lončar E, Lončar Ž, Mihajlović D, Pandžić K, Patarčić M, Srnec L, Vučetić V (2008) Climate atlas of Croatia 1961–1990, 1971–2000. Meteorological and Hydrological Service of Croatia, Zagreb

    Google Scholar 

  • Zink K, Vogel H, Vogel B, Magyar D, Kottmeier C (2011) Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. Int J Biometeorol. doi:10.1007/s00484-011-0468-8

Download references

Acknowledgement

This work was supported by the Ministry of Science, Education and Sports (grants No. 119-1193086-1311; No. 0121999).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Telišman Prtenjak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prtenjak, M.T., Srnec, L., Peternel, R. et al. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia. Int J Biometeorol 56, 1145–1158 (2012). https://doi.org/10.1007/s00484-012-0520-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-012-0520-3

Keywords

  • Slope winds
  • Urban heat island circulation
  • Recirculation of pollen grains
  • WRF model
  • Regional transport