Advertisement

International Journal of Biometeorology

, Volume 56, Issue 5, pp 823–830 | Cite as

Growing degree-days for the ‘Niagara Rosada’ grapevine pruned in different seasons

  • Fábio Vale ScarpareEmail author
  • João Alexio Scarpare Filho
  • Alessandro Rodrigues
  • Klaus Reichardt
  • Luiz Roberto Angelocci
Original Paper

Abstract

Plant growth and development are proportional to biological time, or the thermal time of the species, which can be defined as the integral of the temperature over time between the lower and upper temperature developmental thresholds. The objective of this study was to investigate the efficiency of the growing degree-day (GDD) approach for vines of the ‘Niagara Rosada’ cultivar pruned in winter and summer seasons, and physiological phases (mobilisation and reserve accumulation) in a humid subtropical region. The experiment was carried out on 13-year-old plants in Piracicaba, São Paulo State-Brazil, evaluating 24 production cycles, 12 from the winter pruning, and 12 from the summer pruning. The statistical design was comprised of randomised blocks, using the pruning dates as treatment: 20 July, 4 August, 19 August, and 3 September (winter); 1 February, 15 February, 2 March, and 16 March (summer). Comparison of the mean values of GDD among pruning dates was evaluated by the Tukey test, and comparison between pruning seasons was made by the F test for orthogonal contrasts, both at the 5% probability level. The results showed good agreement between the values of GDD required to complete the cycle from the winter pruning until harvest when compared with other studies performed with the same cultivar grown in the Southern and Southeastern regions of Brazil. However, there was a consistent statistical difference between GDD computed for winter and summer pruning, which allowed us to conclude that this bio-meteorological index is not sufficient to distinguish vines pruned in different seasons and physiological phases applied in humid subtropical climates.

Keywords

Thermal heat requirement Grape Phenology Shoot growth rate Winter pruning Summer pruning 

Notes

Acknowledgements

The authors are thankful to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), for scholarships to F.V.S. and K.R. J.A.S.F, A.R., and L.R.A. are fellows of the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

References

  1. Anzanello R, Souza PVD, Gonzatto MP (2008) Production of ‘Niagara Branca’ and ‘Concord’ varieties submitted to two harvests by season at depressão central of Rio Grande do Sul. Sci Agrar 9:311–316Google Scholar
  2. Brunini O, Zullo Júnior J, Pinto HS et al (2001) Riscos climáticos para a cultura do milho no estado de São Paulo. Rev Bras Agrometeorol 9:519–526Google Scholar
  3. Camargo MBP, Brunini O, Miranda MAC (1987) Temperatura-base para cálculo dos graus-dia para cultivares de soja em São Paulo. Pesqui Agropecu Bras 22:115–121Google Scholar
  4. Coombe BG (1987) Influence of temperature on composition and quality of grapes. Acta Hortic 206:23–35Google Scholar
  5. de Réaumur RAF (1735) Observations du thermomètre, faites à Paris pendant l'annee 1735, comparées avec celles qui ont été faites sous la ligne, á l'isle de France. á Alger et quelques unes des nos isles de l'Amérique. Memoires de l'Académie des Sciences de ParisGoogle Scholar
  6. Due G, Morris M, Pattison S, Coombe BG (1993) Modelling grapevine phenology against weather: considerations based on a large data set. Agric For Meteorol 65:91–106CrossRefGoogle Scholar
  7. Ferreira EA, Regina MA, Chalfun NNJ, Antunes LEC (2004) Antecipação de safra para videira ‘Niagara Rosada’ na região do sul do Estado de Minas Gerais. Cienc Agrotec 28:1221–1227Google Scholar
  8. Hidalgo L (2002) Tratado de viticultura general. Mundi-prensa, MadridGoogle Scholar
  9. Jackson DI, Lombard PB (1993) Environmental and management practices affecting grapes composition and wine quality: a review. Am J Enol Vitic 44:409–430Google Scholar
  10. Kliewer WR (1973) Berry composition of Vitis vinifera cultivars as influenced by photo and nycto temperatures during maturation. J Am Soc Hortic Sci 2:153–159Google Scholar
  11. Köppen WP, Geiger R (1936) Das geographische System der Klima. In Köppen WP, Geiger R Handbuch der Klimatologie. Borntrager, BerlinGoogle Scholar
  12. Lorenz DH, Eichhorn KW, Blei-Holder H et al (1994) Phenological growth stages of the grapevine (Vitis vinifera L.). Wein-Wissenschaft 49:66–70Google Scholar
  13. Mandelli F (1984) Comportamento fenológico das principais cultivares de Vitis vinifera L. para a região de Bento Gonçalves, RS. Dissertação, Universidade de São PauloGoogle Scholar
  14. McIntyre GN, Kliewer WM, Lider LA (1987) Some limitations of the degree-day system as used in viticulture in California. Am J Enol Vitic 38:128–132Google Scholar
  15. McMaster GS, Wilhelm WW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 81:291–300CrossRefGoogle Scholar
  16. Nagata KR, Scarpare Filho JA, Kluge RA, Villa Nova NA (2000) Temperatura-base e soma térmica (graus-dia) para videiras ‘Brasil’ e ‘Benitaka’. Rev Bras Frutic 22:329–333Google Scholar
  17. National Center for Soil—International [NCS] (1999) Brazilian system of soil classification. (ed) NCS, Rio de Janeiro, BrazilGoogle Scholar
  18. Nendel C (2010) Grapevine bud break prediction for cool winter climates. Int J Biometeorol 54:231–241CrossRefGoogle Scholar
  19. Oliveira M (1998) Calculation of bud break and flowering base temperatures for Vitis vinifera cv. Touriga Francesa in the Douro Region of Portugal. Am J Enol Vitic 49:74–78Google Scholar
  20. Ometto JC (1981) Bioclimatologia vegetal. Ceres, São PauloGoogle Scholar
  21. Pedro Júnior MJ, Sentelhas PC (2003) Clima e produção. In: Pommer CVP (ed) Uva: tecnologia de produção, pós-colheita, mercado. Cinco Continentes, Porto Alegre, pp 63–107Google Scholar
  22. Pedro Júnior MJ, Sentelhas PC, Pommer CV et al (1993) Caracterização fenológica da videira ‘Niagara Rosada’ em diferentes regiões paulistas. Bragantia 52:153–160Google Scholar
  23. Pedro Júnior MJ, Sentelhas PC, Pommer CV (1994) Determinação da temperatura-base, graus-dia e índice biometeorológico para a videira ‘Niagara Rosada’. Rev Bras Agrometeorol 2:51–56Google Scholar
  24. Rakocevic M, Martim SF (2010) Time series in analysis of yerba-mate biennial growth modified by environment. Int J Biometeorol 54:1–9CrossRefGoogle Scholar
  25. Reichardt K, Timm LC (2008) Solo, planta e atmosfera: conceitos, processos e aplicações. Manole, BarueriGoogle Scholar
  26. Reynier A (2003) Manual de viticultura. Mundi-Prensa, MadridGoogle Scholar
  27. Roberto SR, Sato AJ, Brenner EA et al (2004) Fenologia e soma térmica (graus-dia) para a videira ‘Isabel’ (Vitis labrusca) cultivada no noroeste do Paraná. Cienc Agrar 25:273–280Google Scholar
  28. Ruml M, Vuković A, Milatović D (2010) Evaluation of different methods for determining growing degree-day thresholds in apricot cultivars. Int J Biometeorol 54:411–422CrossRefGoogle Scholar
  29. Sas Institute (2005) The SAS statistic 2000. SAS Institute, Cary, NCGoogle Scholar
  30. Scarpare Filho JA, Watanabe AT (2004) Relação entre os teores de carboidratos solúveis em raízes e os estádios fenológicos, em dois ciclos de produção. 2006 Proceedings of the Symposium on viticulture of Alentejo. Évora, PortugalGoogle Scholar
  31. Schiedeck G, Miele A, Barradas CIN, Mandelli F (1997) Fenologia da videira ‘Niagara Rosada’ cultivada em estufa e a céu aberto. Rev Bras Agrometeorol 5:199–206Google Scholar
  32. Thompson R, Clark RM (2006) Spatio-temporal modelling and assessment of within-species phenological variability using thermal time methods. Int J Biometeorol 50:312–322CrossRefGoogle Scholar
  33. Vieira ARR, Angelocci LR, Minami K (1996) Effect of the soil water deficit on the eggplant (Solanum melongena L.) yield. Rev Bras Agrometeorol 4:29–33Google Scholar
  34. Villa Nova NA, Pedro Júnior MJ, Pereira AR, Ometto JC (1972) Estimativa de graus-dia acumulados acima de qualquer temperatura base em função das temperaturas máxima e mínima. Ciência da Terra 30:1–8Google Scholar
  35. Winkler AJ, Cook JA, Kliewer WM, Lider LA (1974) General viticulture, 2nd edn. University of California Press, BerkeleyGoogle Scholar

Copyright information

© ISB 2011

Authors and Affiliations

  • Fábio Vale Scarpare
    • 1
    Email author
  • João Alexio Scarpare Filho
    • 2
  • Alessandro Rodrigues
    • 2
  • Klaus Reichardt
    • 3
  • Luiz Roberto Angelocci
    • 1
  1. 1.Department of Biosystems EngineeringUSP/ESALQ—University of São PauloPiracicabaBrazil
  2. 2.Department of Crop ScienceUSP/ESALQ—University of São PauloPiracicabaBrazil
  3. 3.Centre of Nuclear Energy in AgricultureUSP/CENA—University of São PauloPiracicabaBrazil

Personalised recommendations