International Journal of Biometeorology

, Volume 55, Issue 6, pp 843–854 | Cite as

Reproductive phenology of coastal plain Atlantic forest vegetation: comparisons from seashore to foothills

  • Vanessa Graziele Staggemeier
  • Leonor Patrícia Cerdeira MorellatoEmail author
Original Paper


The diversity of tropical forest plant phenology has called the attention of researchers for a long time. We continue investigating the factors that drive phenological diversity on a wide scale, but we are unaware of the variation of plant reproductive phenology at a fine spatial scale despite the high spatial variation in species composition and abundance in tropical rainforests. We addressed fine scale variability by investigating the reproductive phenology of three contiguous vegetations across the Atlantic rainforest coastal plain in Southeastern Brazil. We asked whether the vegetations differed in composition and abundance of species, the microenvironmental conditions and the reproductive phenology, and how their phenology is related to regional and local microenvironmental factors. The study was conducted from September 2007 to August 2009 at three contiguous sites: (1) seashore dominated by scrub vegetation, (2) intermediary covered by restinga forest and (3) foothills covered by restinga pre-montane transitional forest. We conducted the microenvironmental, plant and phenological survey within 30 transects of 25 m × 4 m (10 per site). We detected significant differences in floristic, microenvironment and reproductive phenology among the three vegetations. The microenvironment determines the spatial diversity observed in the structure and composition of the flora, which in turn determines the distinctive flowering and fruiting peaks of each vegetation (phenological diversity). There was an exchange of species providing flowers and fruits across the vegetation complex. We conclude that plant reproductive patterns as described in most phenological studies (without concern about the microenvironmental variation) may conceal the fine scale temporal phenological diversity of highly diverse tropical vegetation. This phenological diversity should be taken into account when generating sensor-derived phenologies and when trying to understand tropical vegetation responses to environmental changes.


Microenvironmental factors Phenological diversity Resource availability Seasonality Tropical forest 



We are grateful to the Instituto Florestal for allowing our research at the Ilha do Cardoso State Park, to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the financial support (n˚06/61759-0 and 08/08344-2) and the master scholarship to V.G.S. (n˚ 05/57739-1) and to Cláudio Bernardo for assistance in the field. L.P.C.M. receives a research productivity fellowship and grant from the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). We also thank M. Sobral for the identification of Myrtaceae species and L.M. Bini for statistical advice.

Supplementary material

484_2011_482_MOESM1_ESM.doc (4 mb)
ESM 1 (DOC 4.00 mb)


  1. Barros F, Melo MMRF, Chiea SAC, Kirizawa M, Wanderley MGL, Jung-Mendaçolli SL (1991) Flora fanerogâmica da Ilha do Cardoso. Boletim do Instituto de Botânica 1:1–184Google Scholar
  2. Bawa KS, Kang H, Grayum MH (2003) Relationships among time, frequency, and duration of flowering in tropical rain forest trees. Am J Bot 90(6):877–887. doi: 10.3732/ajb.90.6.877 CrossRefGoogle Scholar
  3. Bencke CSC, Morellato LPC (2002) Estudo comparativo da fenologia de nove espécies arbóreas em três tipos de floresta atlântica no sudeste do Brasil. Revista Brasileira de Botânica 25(2):237–248. doi: 10.1590/S0100-84042002000200012 CrossRefGoogle Scholar
  4. Bendix J, Homeier J, Cueva Ortiz E, Emck P, Breckle S, Richter M, Beck E (2006) Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest. Int J Biometeorol 50(6):370–384. doi: 10.1007/s00484-006-0029-8 CrossRefGoogle Scholar
  5. Bernardi JVE, Landim PMB, Barreto CL, Monteiro RC (2005) Estudo espacial do gradiente de vegetação do Parque Estadual da Ilha do Cardoso, SP, Brasil. Holos Environ 5(1):1–22Google Scholar
  6. Boulter SL, Kitching RL, Howlett BG (2006) Family, visitors and the weather: patterns of flowering in tropical rain forests of northern Australia. J Ecol 94(2):369–382. doi: 10.1111/J.1365-2745.2005.01084.X CrossRefGoogle Scholar
  7. Caiafa A, Martins F (2010) Forms of rarity of tree species in the southern Brazilian Atlantic rainforest. Biodivers Conserv 19(9):2597–2618. doi: 10.1007/s10531-010-9861-6 CrossRefGoogle Scholar
  8. Camargo M, Souza R, Reys P, Morellato L (2011) Effects of cardinal orientation and light on the reproductive phenology of the cerrado savanna tree Xylopia aromatica (Annonaceae). Anais da Academia Brasileira de Ciências 83(3):1–13CrossRefGoogle Scholar
  9. Castro E, Galetti M, Morellato L (2007) Reproductive phenology of Euterpe edulis (Arecaceae) along a gradient in the Atlantic rainforest of Brazil. Aust J Bot 55:725–735. doi: 10.1071/bt07029 CrossRefGoogle Scholar
  10. Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000) Spatial patterns in the distribution of tropical tree species. Science 288(5470):1414–1418. doi: 10.1126/science.288.5470.1414 CrossRefGoogle Scholar
  11. Couto OS, Cordeiro RMS (2005) Manual de reconhecimento das espécies vegetais da restinga do Estado de São Paulo. Secretaria do Meio Ambiente, Departamento Estadual de Proteção aos Recursos Naturais – DEPRN – São Paulo: SMA 2005, São PauloGoogle Scholar
  12. Fournier LA (1974) Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba 24(4):422–423Google Scholar
  13. Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in lowlands of Costa Rica. J Ecol 62(3):881–919CrossRefGoogle Scholar
  14. Frazer G, Canham C, Lertxman K (1999) Gap Light Analyzer (GLA) version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, Canada and the Institute of Ecosystem Studies, Millbrook, New York, USAGoogle Scholar
  15. Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Missouri Bot Gard 75(1):1–34CrossRefGoogle Scholar
  16. Gentry AH, Emmons LH (1987) Geographical variation in fertility, phenology, and composition of the understory of neotropical forests. Biotropica 19(3):216–227CrossRefGoogle Scholar
  17. Goulart MF, Lemos JP, Lovato MB (2005) Phenological variation within and among populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic forest and transitional sites. Ann Bot 96(3):445–455. doi: 10.1093/aob/mci193 CrossRefGoogle Scholar
  18. Haugaasen T, Peres CA (2005) Tree phenology in adjacent Amazonian flooded and unflooded forests. Biotropica 37(4):620–630. doi: 10.1111/j.1744-7429.2005.00079.x CrossRefGoogle Scholar
  19. Heideman PD (1989) Temporal and spatial variation in the phenology of flowering and fruiting in a tropical rainforest. J Ecol 77(4):1059–1079CrossRefGoogle Scholar
  20. Hubbell SP (1979) Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203(4387):1299–1309. doi: 10.1126/science.203.4387.1299 CrossRefGoogle Scholar
  21. Janzen DH (1967) Synchronization of sexual reproduction of trees within the dry season in Central America. Evolution 21(3):620–637CrossRefGoogle Scholar
  22. Jordano P (1995) Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions. Am Nat 145(2):163–191CrossRefGoogle Scholar
  23. Köppen W (1923) Die Klimate der Erde. Walter de Gruyter, BerlinGoogle Scholar
  24. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  25. Liang L, Schwartz M (2009) Landscape phenology: an integrative approach to seasonal vegetation dynamics. Landsc Ecol 24(4):465–472. doi: 10.1007/s10980-009-9328-x CrossRefGoogle Scholar
  26. Manly BFJ (2004) Multivariate statistical methods: a primer, 3rd edn. Chapman & Hall/CRC, USAGoogle Scholar
  27. Marques M, Oliveira P (2004) Fenologia de espécies do dossel e do sub-bosque de duas Florestas de Restinga na Ilha do Mel, sul do Brasil. Revista Brasileira de Botânica 27:713–723. doi: 10.1590/S0100-84042004000400011 CrossRefGoogle Scholar
  28. Marques MCM, Roper JJ, Salvalaggio APB (2004) Phenological patterns among plant life-forms in a subtropical forest in southern Brazil. Plant Ecol 173(2):203–213. doi: 10.1023/B:VEGE.0000029325.85031.90 Google Scholar
  29. Marques M, Swaine M, Liebsch D (2011) Diversity distribution and floristic differentiation of the coastal lowland vegetation: implications for the conservation of the Brazilian Atlantic Forest. Biodivers Conserv 20(1):153–168. doi: 10.1007/s10531-010-9952-4 CrossRefGoogle Scholar
  30. Melo MMRF, Mantovani W (1994) Composição florística e estrutura do trecho de mata atlântica de encosta, na Ilha do Cardoso (Cananéia, SP, Brazil). Boletim do Instituto de Botânica 9:107–157Google Scholar
  31. Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10(8):710–717. doi: 10.1111/j.1461-0248.2007.01061.x CrossRefGoogle Scholar
  32. Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32(4b):811–823. doi: 10.1111/j.1744-7429.2000.tb00620.x CrossRefGoogle Scholar
  33. Morellato LPC, Alberti LF, Hudson IL (2010) Applications of circular statistics in plant phenology: a case studies approach. In: Hudson IL, Keatley MR (eds) Phenological research. Springer, Netherlands, pp 339–359. doi: 10.1007/978-90-481-3335-2_16 CrossRefGoogle Scholar
  34. Newstrom LE, Frankie GW, Baker HG (1994) A new classification for plant phenology based on flowering patterns in lowland tropical rain-forest trees at La-Selva, Costa-Rica. Biotropica 26(2):141–159CrossRefGoogle Scholar
  35. Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil and the influence of climate. Biotropica 32(4b):793–810. doi: 10.1646/0006-3606(2000)032[0793:POFDAA]2.0.CO;2 CrossRefGoogle Scholar
  36. Pereira AR, Angelocci LR, Sentelhas PC (2001) Agrometeorologia: fundamentos e aplicações práticas. Editora Agropecuária, GuaíbaGoogle Scholar
  37. Pinto MM (1998) Fitossociologia e influência de fatores edáficos na estrutura da vegetação em áreas de Mata Atlântica na Ilha do Cardoso - Cananéia, SP. PhD thesis, UNESP, Jaboticabal, BrasilGoogle Scholar
  38. Pyke CR, Condit R, Aguilar S, Lao S (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. J Veg Sci 12(4):553–566. doi: 10.2307/3237007 CrossRefGoogle Scholar
  39. Richards PW (1996) The tropical rain forest, 2nd edn. Cambridge University Press, Cambridge. doi: 10.2277/0521421942 Google Scholar
  40. Sakai S (2001) Phenological diversity in tropical forests. Popul Ecol 43(1):77–86. doi: 10.1007/PL00012018 CrossRefGoogle Scholar
  41. Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Ann Bot 90(4):517–524. doi: 10.1093/aob/mcf189 CrossRefGoogle Scholar
  42. Schwartz MD, Hanes JM (2010) Intercomparing multiple measures of the onset of spring in eastern North America. Int J Climatol 30(11):1614–1626. doi: 10.1002/joc.2008 CrossRefGoogle Scholar
  43. Scudeller V, Martins F, Shepherd G (2001) Distribution and abundance of arboreal species in the Atlantic ombrophilous dense forest in Southeastern Brazil. Plant Ecol 152(2):185–199. doi: 10.1023/a:1011494228661 CrossRefGoogle Scholar
  44. Seeliger U (1992) Coastal plant communities of Latin America. Academic Press Inc., LondonGoogle Scholar
  45. Sugiyama M (1998) Estudo de florestas de restinga da Ilha do Cardoso, Cananéia, São Paulo, Brasil. Boletim do Instituto de Botânica 11:119–159Google Scholar
  46. Talora DC, Morellato LPC (2000) Fenologia de espécies arbóreas em floresta de planície litorânea do sudeste do Brasil. Revista Brasileira de Botânica 23(1):13–26. doi: 10.1590/S0100-84042000000100002 CrossRefGoogle Scholar
  47. van Schaik CP, Terborgh JW, Wright SJ (1993) The phenology of tropical forests: adaptive significance and consequences for primary consumers. Ann Rev Ecol Syst 24:353–377. doi: 10.1146/ CrossRefGoogle Scholar
  48. Wheelwright NT (1985) Competition for dispersers, and the timing of flowering and fruiting in a guild of tropical trees. Oikos 44(3):465–477CrossRefGoogle Scholar
  49. Zar JH (1996) Biostatiscal analysis. Prentice-Hall International, LondonGoogle Scholar

Copyright information

© ISB 2011

Authors and Affiliations

  • Vanessa Graziele Staggemeier
    • 1
    • 2
  • Leonor Patrícia Cerdeira Morellato
    • 1
    Email author
  1. 1.Departamento de Botânica, Laboratório de Fenologia, Grupo de Fenologia e Dispersão de SementesUNESP - Univ Estadual PaulistaRio ClaroBrazil
  2. 2.Departamento de Ecologia, Laboratório de Ecologia Teórica e Síntese, ICBUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations