Skip to main content
Log in

Deriving the operational procedure for the Universal Thermal Climate Index (UTCI)

  • Special Issue (UTCI)
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The Universal Thermal Climate Index (UTCI) aimed for a one-dimensional quantity adequately reflecting the human physiological reaction to the multi-dimensionally defined actual outdoor thermal environment. The human reaction was simulated by the UTCI-Fiala multi-node model of human thermoregulation, which was integrated with an adaptive clothing model. Following the concept of an equivalent temperature, UTCI for a given combination of wind speed, radiation, humidity and air temperature was defined as the air temperature of the reference environment, which according to the model produces an equivalent dynamic physiological response. Operationalising this concept involved (1) the definition of a reference environment with 50% relative humidity (but vapour pressure capped at 20 hPa), with calm air and radiant temperature equalling air temperature and (2) the development of a one-dimensional representation of the multivariate model output at different exposure times. The latter was achieved by principal component analyses showing that the linear combination of 7 parameters of thermophysiological strain (core, mean and facial skin temperatures, sweat production, skin wettedness, skin blood flow, shivering) after 30 and 120 min exposure time accounted for two-thirds of the total variation in the multi-dimensional dynamic physiological response. The operational procedure was completed by a scale categorising UTCI equivalent temperature values in terms of thermal stress, and by providing simplified routines for fast but sufficiently accurate calculation, which included look-up tables of pre-calculated UTCI values for a grid of all relevant combinations of climate parameters and polynomial regression equations predicting UTCI over the same grid. The analyses of the sensitivity of UTCI to humidity, radiation and wind speed showed plausible reactions in the heat as well as in the cold, and indicate that UTCI may in this regard be universally useable in the major areas of research and application in human biometeorology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Błażejczyk K, Nilsson H, Holmér I (1993) Solar Heat Load on Man - Review of Different Methods of Estimation. Int J Biometeorol 37:125–132. doi:10.1007/BF01212621

    Article  Google Scholar 

  • Bröde P, Fiala D, Kampmann B, Havenith G, Jendritzky G (2009) Der Klimaindex UTCI - Multivariate Analyse der Reaktion eines thermophysiologischen Simulationsmodells. In: Gesellschaft für Arbeitswissenschaft (ed) Arbeit, Beschäftigungsfähigkeit und Produktivität im 21. Jahrhundert. GfA-Press, Dortmund, pp 705–708

    Google Scholar 

  • Bröde P, Jendritzky G, Fiala D, Havenith G (2010a) The Universal Thermal Climate Index UTCI in operational use. In: Adapting to change: new thinking on comfort. Network for Comfort and Energy Use in Buildings, London, 6 pp

  • Bröde P, Kampmann B, Havenith G, Jendritzky G (2008) Effiziente Berechnung des klimatischen Belastungs-Index UTCI. In: Gesellschaft für Arbeitswissenschaft (ed) Produkt- und Produktions-Ergonomie - Aufgabe für Entwickler und Planer. GfA-Press, Dortmund, pp 271–274

    Google Scholar 

  • Bröde P, Krüger EL, Rossi FA, Fiala D (2011) Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI – a case study from Southern Brazil. Int J Biometeorol. doi:10.1007/s00484-011-0452-3

  • Bröde P, Kuklane K, Candas V, den Hartog EA, Griefahn B, Holmér I, Meinander H, Nocker W, Richards M, Havenith G (2010b) Heat Gain From Thermal Radiation Through Protective Clothing With Different Insulation, Reflectivity and Vapour Permeability. Int J Occup Saf Ergon 16:231–244

    Google Scholar 

  • Bruse M (2009) Analysing human outdoor thermal comfort and open space usage with the Multi-Agent System BOTworld. Seventh International Conference on Urban Climate (ICUC-7). ICUC, Yokohama, 4 pp on DVD

  • De Dear RJ (1989) Diurnal and seasonal variations in the human thermal climate of Singapore. Singapore J Trop Geogr 10:13–26

    Article  Google Scholar 

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2011) UTCI-Fiala multi-node model of human temperature regulation and thermal comfort. Int J Biometeorol. doi:10.1007/s00484-011-0424-7

    Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972

    CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159

    Article  CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2003) First principles modeling of thermal sensation responses in steady-state and transient conditions. ASHRAE Trans 109:179–186

    Google Scholar 

  • Gagge AP, Fobelets AP, Berglund PE (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731

    Google Scholar 

  • Gagge AP, Stolwijk JA, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–262

    Google Scholar 

  • Gonzalez RR, Nishi Y, Gagge AP (1974) Experimental evaluation of standard effective temperature a new biometeorological index of man's thermal discomfort. Int J Biometeorol 18:1–15. doi:10.1007/BF01450660

    Article  CAS  Google Scholar 

  • Härdle W, Simar L (2007) Applied Multivariate Statistical Analysis. Springer, Berlin

    Google Scholar 

  • Havenith G, Bröde P, Candas V, den Hartog E, Holmér I, Kuklane K, Meinander H, Nocker W, Richards M, Wang X (2009) Evaporative cooling in protective clothing: efficiency in relation to distance to skin. In: Castellani JW, Endrusick TL (eds) Environmental ergonomics XIII. University of Wollongong, Wollongong, pp 20–24

    Google Scholar 

  • Havenith G, Fiala D, Błażejczyk K, Richards M, Bröde P, Holmér I, Rintamäki H, Benshabat Y, Jendritzky G (2011) The UTCI-Clothing Model. Int J Biometeorol. doi:10.1007/s00484-011-0451-4

  • Havenith G, Richards MG, Wang X, Bröde P, Candas V, den Hartog E, Holmér I, Kuklane K, Meinander H, Nocker W (2008) Apparent latent heat of evaporation from clothing: attenuation and "heat pipe" effects. J Appl Physiol 104:142–149. doi:10.1152/japplphysiol.00612.2007

    Article  Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75. doi:10.1007/s004840050118

    Article  Google Scholar 

  • Höppe P (2002) Different aspects of assessing indoor and outdoor thermal comfort. Energy Build 34:661–665. doi:10.1016/S0378-7788(02)00017-8

    Article  Google Scholar 

  • Houghten FC, Yagloglou CP (1923) Determining lines of equal comfort. Trans Am Soc Heat Ventil Eng 29:163–176

    Google Scholar 

  • Huang J (2007) Prediction of air temperature for thermal comfort of people in outdoor environments. Int J Biometeorol 51:375–382. doi:10.1007/s00484-006-0083-2

    Article  Google Scholar 

  • ISO 7726 (1998) Ergonomics of the thermal environment - Instruments for measuring physical quantities. International Organisation for Standardisation, Geneva

  • Jendritzky G (2007) Scientific Report. In: COST Domain Committee "ESSEM" (ed) COST 730 Monitoring Progress Report 06/02/2005 - 31/12/2006. COST Office, Bruxelles, pp 7–13

  • Jendritzky G, Havenith G, Weihs P, Batchvarova E, De Dear RJ (2007) The universal thermal climate index UTCI goal and state of COST action 730. In: Mekjavic IB, Kounalakis SN, Taylor NAS (eds) Environmental ergonomics XII. Biomed, Ljubljana, pp 509–512

    Google Scholar 

  • Kampmann B (2000) Zur Physiologie der Arbeit in warmem Klima. Ergebnisse aus Laboruntersuchungen und aus Feldstudien im Steinkohlenbergbau. Bergische Universität, Wuppertal

  • Kampmann B, Bröde P, Fiala D (2011) Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int J Biometeorol. doi:10.1007/s00484-011-0410-0

    Google Scholar 

  • Kampmann B, Bröde P, Havenith G, Jendritzky G (2008a) Der Entwicklungsstand des klimatischen Belastungs-Index UTCI (Universal Thermal Climate Index). In: Gesellschaft für Arbeitswissenschaft (ed) Produkt- und Produktions-Ergonomie - Aufgabe für Entwickler und Planer. GfA-Press, Dortmund, pp 243–246

    Google Scholar 

  • Kampmann B, Bröde P, Schütte M, Griefahn B (2008b) Lowering of resting core temperature during acclimation is influenced by exercise stimulus. Eur J Appl Physiol 104:321–327. doi:10.1007/s00421-007-0658-6

    Article  Google Scholar 

  • Kenny N, Warland J, Brown R, Gillespie T (2009a) Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. Int J Biometeorol 53:415–428. doi:10.1007/s00484-009-0226-3

    Article  Google Scholar 

  • Kenny N, Warland J, Brown R, Gillespie T (2009b) Part B: Revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity. Int J Biometeorol 53:429–441. doi:10.1007/s00484-009-0227-2

    Article  Google Scholar 

  • Kjellström T, Gabrysch S, Lemke B, Dear K (2009) The 'Hothaps' programme for assessing climate change impacts on occupational health and productivity: an invitation to carry out field studies. Glob Health Action 2. doi:10.3402/gha.v2i0.2082

    Google Scholar 

  • Koppe C, Jendritzky G (2005) Inclusion of short-term adaptation to thermal stresses in a heat load warning procedure. Meteorol Z 14:271–278. doi:10.1127/0941-2948/2005/0030

    Article  Google Scholar 

  • Levine RV, Norenzayan A (1999) The Pace of Life in 31 Countries. J Cross Cult Psychol 30:178–205

    Article  Google Scholar 

  • Lin TP, de Dear R, Hwang RL (2011) Effect of thermal adaptation on seasonal outdoor thermal comfort. Int J Climatol 31:302–312. doi:10.1002/joc.2120

    Article  Google Scholar 

  • Lindberg F, Holmer B, Thorsson S (2008) SOLWEIG 1.0 - Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int J Biometeorol 52:697–713. doi:10.1007/s00484-008-0162-7

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139. doi:10.1007/s00484-009-0261-0

    Article  Google Scholar 

  • Morabito M, Crisci A, Cecchi L, Modesti P, Maracchi G, Gensini G, Orlandini S (2008) A biometeorological procedure for weather forecast to assess the optimal outdoor clothing insulation. Eur J Appl Physiol 104:221–228. doi:10.1007/s00421-008-0686-x

    Article  Google Scholar 

  • Morgenroth O (2007) Die Gehgeschwindigkeit als Merkmal des Lebenstempos. Zeit und Handeln - Psychologie der Zeitbewältigung. W. Kohlhammer, Stuttgart, pp 108–155

  • Munir A, Takada S, Matsushita T, Kubo H (2010) Prediction of human thermophysiological responses during shower bathing. Int J Biometeorol 54:165–178. doi:10.1007/s00484-009-0265-9

    Article  Google Scholar 

  • Oke TR (1987) Boundary Layer Climates, 2nd edn. Routledge, London

    Google Scholar 

  • Osczevski R, Bluestein M (2005) The new wind chill equivalent temperature chart. Bull Am Meteorol Soc 86:1453–1458

    Article  Google Scholar 

  • Parsons KC (2003) Human Thermal Environments: The Effects of Hot, Moderate and Cold Environments on Human Health, Comfort and Performance, 2nd edn. Taylor and Francis, London

    Google Scholar 

  • Psikuta A, Fiala D, Lascheschwski.G., Jendritzky G, Richards M, Błażejczyk K, Mekjavic IB, Rintamäki H, De Dear RJ, Havenith G (2011) Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol. doi:10.1007/s00484-011-0450-5

  • Sedgewick R (1992) Algorithms in C++. Addison-Wesley, Reading

  • Spagnolo J, De Dear RJ (2003) A human thermal climatology of subtropical Sydney. Int J Climatol 23:1383–1395. doi:10.1002/joc.939

    Article  Google Scholar 

  • Staiger H, Bucher K, Jendritzky G (1997) Gefühlte Temperatur. Die physiologisch gerechte Bewertung von Wärmebelastung und Kältestress beim Aufenthalt im Freien in der Maßzahl Grad Celsius. Ann Meteorol 33:100–107

    Google Scholar 

  • Stendel M, Roeckner E (1998) Impacts of horizontal resolution on simulated climate statistics in ECHAM4. MPI Report 253. Max-Planck-Institute for Meteorology, Hamburg

  • Stolwijk JAJ (1971) A mathematical model of physiological temperature regulation in man. NASA contractor report, NASA CR-1855, Washington DC

  • The Commission for Thermal Physiology of the International Union of Physiological Sciences (2003) Glossary of terms for thermal physiology. J Therm Biol 28:75–106. doi:10.1016/S0306-4565(02)00055-4

    Article  Google Scholar 

  • Thorsson S, Lindberg F, Eliasson I, Holmer B (2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993. doi:10.1002/joc.1537

    Article  Google Scholar 

  • Vanos J, Warland J, Gillespie T, Kenny N (2010) Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int J Biometeorol 54:319–334. doi:10.1007/s00484-010-0301-9

    Article  Google Scholar 

  • Weihs P, Staiger H, Tinz B, Batchvarova E, Rieder H, Vuilleumier L, Maturilli M, Jendritzky G (2011) The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int J Biometeorol. doi:10.1007/s00484-011-0416-7

    Google Scholar 

  • Wiseman R (2010) Pace of Life - a Quirkology experiment. http://www.paceoflife.co.uk/. Accessed 2 July 2010

Download references

Acknowledgements

This work was supported within the COST Action 730 “Towards a Universal Thermal Climate Index UTCI for Assessing the Thermal Environment of the Human Being”. The stimulating input from the lively discussions with our colleagues within this action is gratefully appreciated. COST is supported by the EU RTD Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bröde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1–3

(PDF 331 kb)

ESM 4

(ZIP 392 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bröde, P., Fiala, D., Błażejczyk, K. et al. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56, 481–494 (2012). https://doi.org/10.1007/s00484-011-0454-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-011-0454-1

Keywords

Navigation