Skip to main content

Advertisement

Log in

Validation of the Fiala multi-node thermophysiological model for UTCI application

  • Special Issue (UTCI)
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The important requirement that COST Action 730 demanded of the physiological model to be used for the Universal Thermal Climate Index (UTCI) was its capability of accurate simulation of human thermophysiological responses across a wide range of relevant environmental conditions, such as conditions corresponding to the selection of all habitable climates and their seasonal changes, and transient conditions representing the temporal variation of outdoor conditions. In the first part of this study, available heat budget/two-node models and multi-node thermophysiological models were evaluated by direct comparison over a wide spectrum of climatic conditions. The UTCI-Fiala model predicted most reliably the average human thermal response, as shown by least deviations from physiologically plausible responses when compared to other models. In the second part of the study, this model was subjected to extensive validation using the results of human subject experiments for a range of relevant (steady-state and transient) environmental conditions. The UTCI-Fiala multi-node model proved its ability to predict adequately the human physiological response for a variety of moderate and extreme conditions represented in the COST 730 database. The mean skin and core temperatures were predicted with average root-mean-square deviations of 1.35 ± 1.00°C and 0.32 ± 0.20°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. COST Action 730 refers to a European Cooperation in Science and Technology Action number 730 to develop a Universal Thermal Climate Index (UTCI).

References

  • Barlow RJ (1989) Different definitions of the standard deviation. In: Sandiford DJ, Mandl F, Phillips AC (eds) Statistics. A guide to the use of statistical methods in the physical sciences. Wiley, Chichester, pp 10–12

    Google Scholar 

  • Błażejczyk K (1994) New climatological-and-physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zeszyty IgiPZ PAN 28:27–58

    Google Scholar 

  • Bluestein M, Zecher J (1999) A new approach to an accurate wind chill factor. Bull Am Meteorol Soc 80(9):1893–1899

    Article  Google Scholar 

  • Daanen HA, van Es EM, de Graaf JL (2006) Heat strain and gross efficiency during endurance exercise after lower, upper, or whole body precooling in the heat. Int J Sports Med (5):379

  • Fanger PO (1970) Thermal comfort. McGraw-Hill, New York

    Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87(5):1957–1972

    CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45(3):143–159

    Article  CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2003) First principles modelling of thermal sensation responses in steady-state and transient conditions. ASHRAE Trans 109:179–186

    Google Scholar 

  • Fiala D, Psikuta A, Jendritzky G, Paulke S, Nelson DA, van Marken Lichtenbelt WD, Frijns AJH (2010) Physiological modelling for technical, clinical and research applications. Front Biosci S2:939–968. doi:10.2741/s112

    Article  Google Scholar 

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2011) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol. Special Issue UTCI. doi:10.1007/s00484-011-0424-7

  • Gagge AP, Stolwijk JA, Nishi Y (1971) Effective temperature scale, based on a simple model of human physiological regulatory response. ASHRAE J 13(1):58

    Google Scholar 

  • Gagge AP, Fobelets AP, Berglund PE (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731

    Google Scholar 

  • Gonzalez RR, McLellan TM, Withey WR, Chang SK, Pandolf KB (1997) Heat strain models applicable for protective clothing systems: comparison of core temperature response. J Appl Physiol 83(3):1017–1032

    CAS  Google Scholar 

  • Hardy JD, Stolwijk JA (1966) Partitional calorimetric studies of man during exposures to thermal transients. J Appl Physiol 21(6):1799

    CAS  Google Scholar 

  • Haslam RA, Parsons KC (1988) Quantifying the effects of clothing for models of human response to the thermal environment. Ergonomics 31(12):1787–1806

    Article  CAS  Google Scholar 

  • Havenith G (2001) Individualized model of human thermoregulation for the simulation of heat stress response. J Appl Physiol 90(5):1943–1954

    CAS  Google Scholar 

  • Havenith G, Nilsson H (2004) Correction of clothing insulation for movement and wind effects, a meta-analysis. Eur J Appl Physiol 92:636–640

    Article  CAS  Google Scholar 

  • Havenith G, Nilsson HO (2005) Correction of clothing insulation for movement and wind effects, a meta-analysis (vol 92, pg 636, 2004). Eur J Appl Physiol 93(4):506–506. doi:10.1007/s00421-004-1267-2

    Article  Google Scholar 

  • Havenith G, Fiala D, Błazejczyk K, Richards M, Broede P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2011) The UTCI-clothing model. Int J Biometeorol. Special Issue UTCI. doi:10.1007/s00484-011-0451-4

  • Holmer I, Nilsson H, Havenith G, Parsons K (1999) Clothing convective heat exchange—proposal for improved prediction in standards and models. Ann Occup Hyg 43(5):329–337

    CAS  Google Scholar 

  • Höppe P (1984) Die Energiebilanz des Menschen. University Munich, Munich, Germany

    Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75

    Article  Google Scholar 

  • Huizenga C, Zhang H, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36(6):691–699

    Article  Google Scholar 

  • ISO7933 (1989) Hot environments—analytical determination and interpretation of heat stress using calculation of required sweat rate.

  • ISO9920 (2007) Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble.

  • Jack A (2010) Einfluss hoch funktioneller Sporttextilien auf die Thermoregulation von Ausdauerathleten bei unterschiedlichen Umgebungstemperaturen. PhD thesis, Bayreuth University, Bayreuth

  • Kubaha K, Fiala D, Toftum J, Taki AH (2004) Human projected area factors for detailed direct and diffuse solar radiation analysis. Int J Biometeorol 49(2):113–129

    Article  CAS  Google Scholar 

  • Lind AR (1963) A physiological criterion for setting thermal environmental limits for everyday work. J Appl Physiol 18:51–56

    CAS  Google Scholar 

  • Makinen T, Gavhed D, Holmer I, Rintamaki H (2000) Thermal responses to cold wind of thermoneutral and cooled subjects. Eur J Appl Physiol 81(5):397–402

    Article  CAS  Google Scholar 

  • Moran DS, Shitzer A, Pandolf KB (1998) A physiological strain index to evaluate heat stress. Am J Physiol Regul Integr Comp Physiol 275(1):R129–R134

    CAS  Google Scholar 

  • Osczevski RJ (1995) The basis of wind chill. Arctic 48(4):372–382

    Google Scholar 

  • Osczevski R, Bluestein M (2005) The new wind chill equivalent temperature chart. Bull Am Meteorol Soc 86 (10):1453–1458. doi:10.1175/bams-86-10-1453

    Google Scholar 

  • Pickup J, De Dear R (1999) An outdoor thermal comfort index (OUT_SET*). Part I—The model and its assumptions. In: de Dear R, Kalma J, Oke T, Auliciems A (eds) Proceedings of Biometeorology and urban climatology at the turn of the millenium. Sydney, WCASP-50, WMO/TD No. 1026, pp 279–283

  • Psikuta A, Fiala D, Richards M (2006) Validation of the Fiala thermo-physiological model for COST 730 using human and clothing data. Part 1. STSM Scientific Report. Karlsruhe University, Karlsruhe

    Google Scholar 

  • Psikuta A, Fiala D, Richards M (2007a) Further validation of the Fiala thermo-physiological model for COST 730 using human and clothing data. Part 2. STSM Scientific Report. Karlsruhe University, Karlsruhe

    Google Scholar 

  • Psikuta A, Fiala D, Richards M (2007b) Further validation of the Fiala thermo-physiological model for COST 730 using human and clothing data. Part 3. STSM Scientific Report. TNO, Soesteberg

    Google Scholar 

  • Shitzer A (2006) Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient. Int J Biometeorol 50(4):224–232. doi:10.1007/s00484-005-0011-x

    Article  Google Scholar 

  • Stolwijk JA, Nadel ER, Wenger CB, Roberts MF (1973) Development and application of a mathematical model of human thermoregulation. Arch Sci Physiol 27(3):A303–A310

    Google Scholar 

  • Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34(6):637–646

    Article  Google Scholar 

  • Wissler EH (1985) Mathematical simulation of human thermal behaviour using whole body models. In: Shitzer A, Eberhart RC (eds) Heat transfer in medicine and biology. Analysis and applications, vol 1. Plenum, New York, pp 325–374

    Google Scholar 

  • Wissler EH (2003) Probability of survival during accidental immersion in cold water. Aviat Space Environ Med 74(1):47–55

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank COST Office and the Swiss State Secretariat for Education and Research (SBF/SER) for funding this work as part of COST Action 730 under project C06.0023, members of the WG1 of COST Action 730 for their comments and discussions, Dr. Emiel den Hartog from TNO for providing some datasets and hosting a short-term scientific mission in his laboratory, and to Dr. Veronika Meyer and Dr. René Rossi from Laboratory for Protection and Physiology at Empa for their editorial input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Psikuta.

Electronic supplemental materials

Below is the link to the electronic supplementary material.

Fig. S1

Comparison of dry heat loss (Qdry) predicted using different models for a wide range of environmental temperature (Ta). For model abbreviations see Table 1 (GIF 23 kb)

High resolution image (EPS 789 kb)

Fig. S2

Comparison of sweat evaporation at the skin (Esk) responses predicted using different models for a wide range of environmental temperature (Ta). For model abbreviations see Table 1 (GIF 26 kb)

High resolution image (EPS 996 kb)

Table S1

General description and root mean square deviations (rmsd) and mean deviations (bias) of all experiments of the COST 730 database for the validation study. Rcl and Recl are clothing intrinsic thermal and evaporative resistances and Rt is clothing total thermal resistance. (GIF 439 kb)

High resolution image (EPS 5629 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psikuta, A., Fiala, D., Laschewski, G. et al. Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol 56, 443–460 (2012). https://doi.org/10.1007/s00484-011-0450-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-011-0450-5

Keywords

Profiles

  1. George Havenith