International Journal of Biometeorology

, Volume 55, Issue 2, pp 119–131 | Cite as

Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions

  • João A. Santos
  • Aureliano C. Malheiro
  • Melanie K. Karremann
  • Joaquim G. Pinto
Original Paper

Abstract

The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.

Keywords

Grapevine yield modelling Climate change projections Douro Portugal 

Supplementary material

484_2010_318_Fig8_ESM.gif (26 kb)
Fig. S1

Monthly mean (black bars/curves) precipitation totals (top) and air temperatures (bottom) recorded at Vila Real in the period 1986–2008. Grey bars/curves represent the corresponding 10th and 90th percentiles (GIF 26 kb)

484_2010_318_MOESM1_ESM.eps (876 kb)
High resolution (EPS 875 kb)
484_2010_318_Fig9_ESM.gif (45 kb)
Fig. S2

Monthly mean fields of MSLP and of the 10 m wind vectors in the Euro-Atlantic sector for NCEP reanalysis in 1958–2008 (GIF 44 kb)

484_2010_318_MOESM2_ESM.eps (2.3 mb)
High resolution (EPS 2314 kb)
484_2010_318_Fig10_ESM.gif (24 kb)
Fig. S3

Box plots of the predictors (precipitation and temperatures anomalies for the listed months) recorded at Vila Real (obs) and simulated by CLM within DV in the period 1960–2000 (C20). Medians are indicated by thick black lines, lower (upper) box limits correspond to the first (third) quartile and whiskers correspond to the non-outlier minima and maxima. First (second) order outliers are indicated by circles (asterisks) and represent values above/below the box upper/lower limit by at least 1.5 (3.0) times the respective box height (GIF 23 kb)

484_2010_318_MOESM3_ESM.eps (934 kb)
High resolution (EPS 934 kb)
484_2010_318_Fig11_ESM.gif (151 kb)
Fig. S4

Monthly mean fields of MSLP and of the 10 m wind vectors in the Euro-Atlantic sector for ECHAM5 for a March, b May and c June in 1961–2000 (left panels) and 2060–2100 (right panels). Shading on right panels represents the differences in MSLP between the right and left patterns (GIF 151 kb)

484_2010_318_MOESM4_ESM.eps (7.6 mb)
High resolution (EPS 7773 kb)

References

  1. Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543CrossRefGoogle Scholar
  2. Bindi M, Fibbi L, Gozzini B, Orlandini S, Miglietta F (1996) Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim Res 7:213–224CrossRefGoogle Scholar
  3. Bindi M, Fibbi L, Miglietta F (2001) Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur J Agron 14:145–155CrossRefGoogle Scholar
  4. Bisson LF, Waterhouse AL, Ebeler SE, Walker MA, Lapsley JT (2002) The present and future of the international wine industry. Nature 418:696–699CrossRefGoogle Scholar
  5. Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: brief description and long- term applications. COSMO Newsletter 6:225–235Google Scholar
  6. Carbonneau A, Riou C, Guyon D, Riom J, Schneider C (1992) Photosynthèse: influences climatiques et facteurs d’adaptation. In Agrométéorologie de la vigne en France. Office des publications officielles des Communautés européennes, BruxellesGoogle Scholar
  7. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie ELR (2004) Grape ripening as a past climate indicator. Nature 432:289–290CrossRefGoogle Scholar
  8. DR (2009) Decreto-Lei 173/2009 de 3 de Agosto. Ministério da Agricultura, do Desenvolvimento Rural e das Pescas. Diário da República, 1.ª série, 148: 4996–5006Google Scholar
  9. Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana J-F, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 273–313Google Scholar
  10. Fonseca ABM (1949) O benefício e a sua distribuição na Região Vinhateira do Douro. Federação dos Vinicultores da Região do Douro, Régua, PortugalGoogle Scholar
  11. García de Cortázar-Atauri I (2006) Adaptation du modèle STICS à la vigne (Vitis vinifera L.). Utilisation dans le cadre d’une étude du changement climatique à l’échelle de la France. Dissertation, Ecole Supérieur Nationale d’Agronomie de Montpellier, FranceGoogle Scholar
  12. INMG (1991) O clima de Portugal: Normais climatológicas da região de “Trás-os-Montes e Alto Douro e Beira Interior” correspondentes a 1951–1980. Instituto Nacional de Meteorologia e Geofísica, LisboaGoogle Scholar
  13. IVV (2008) Vinhos e Aguardentes de Portugal, Anuário’08. Ministério da Agricultura, do Desenvolvimento Rural e das Pescas: Instituto da Vinha e do Vinho, LisboaGoogle Scholar
  14. Jackson DI, Lombard PB (1993) Environmental and management practices affecting grape composition and wine quality—a review. Am J Enol Vitic 44:409–430Google Scholar
  15. Jones GV (2006) Climate and Terroir: impacts of climate variability and change on wine. In: Macqueen RW, and Meinert LD (eds) Fine wine and terroir—the geoscience perspective. Geoscience Canada Reprint Series Number 9, Geological Association of Canada, St. John’s, NewfoundlandGoogle Scholar
  16. Jones GV, Davis RE (2000a) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51:249–261Google Scholar
  17. Jones GV, Davis RE (2000b) Using a synoptic climatological approach to understand climate-viticulture relationships. Int J Climatol 20:813–837CrossRefGoogle Scholar
  18. Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343CrossRefGoogle Scholar
  19. Kenny GJ, Harrison PA (1992) The effects of climate variability and change on grape suitability in Europe. J Wine Res 3:163–183CrossRefGoogle Scholar
  20. Kistler R et al (2001) The NCEP/NCAR 50-year reanalysis: monthly-means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  21. Lautenschlager M et al (2009a) Climate Simulation with CLM, Climate of the 20th Century run no.1, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_C20_1_D3
  22. Lautenschlager M et al (2009b) Climate Simulation with CLM, Climate of the 20th Century run no.2, Data Stream 3: European region MPI-M/MaD. World Data Center for climate. doi:10.1594/WDCC/CLM_C20_2_D3
  23. Lautenschlager M et al (2009c) Climate Simulation with CLM, Climate Simulation with CLM, Scenario A1B run no.1, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_A1B_1_D3
  24. Lautenschlager M et al (2009d) Climate Simulation with CLM, Climate Simulation with CLM, Scenario A1B run no.2, Data Stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_A1B_2_D3
  25. Lobell DB, Field CB, Cahill KN, Bonfils C (2006) Impacts of future climate change on California perennial crop yields: model projections with climate and crop uncertainties. Agric For Meteorol 141:208–218CrossRefGoogle Scholar
  26. Magalhães NP (2008) Tratado de Viticultura—A videira, a vinha e o “terroir”. Chaves Ferreira Publicações, LisboaGoogle Scholar
  27. Malheiro ANC (2005) Microclimate, yield and water-use of vineyards in the Douro Region, Portugal. Dissertation, Cranfield University, UKGoogle Scholar
  28. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  29. Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34:L20705. doi:10.1029/2007GL031381 CrossRefGoogle Scholar
  30. Moutinho-Pereira J, Gonçalves B, Bacelar E, Cunha JB, Coutinho J, Correia CM (2009) Effects of elevated CO2 on grapevine (Vitis vinifera L.): physiological and yield attributes. Vitis 48:159–165Google Scholar
  31. Nakićenović N, Swart R (eds) (2000) IPCC Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, UKGoogle Scholar
  32. Nemani RR, White MA, Cayan DR, Jones GV, Running SW, Coughlan JC, Peterson DL (2001) Asymmetric warming over coastal California and its impact on the premium wine industry. Clim Res 19:25–34CrossRefGoogle Scholar
  33. Orlandini S, Grifoni D, Mancini M, Barcaioli G, Crisci A (2005) Analisi degli effetti della variabilità meteo-climatica sulla qualità del Brunello di Montalcino. Riv Italiana Agrometeorol 2:37–44Google Scholar
  34. Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:195–210CrossRefGoogle Scholar
  35. Ramos MC, Jones GV, Martínez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 38:1–15CrossRefGoogle Scholar
  36. Roeckner E et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 Atmosphere Model. J Climate 19:3771–3791CrossRefGoogle Scholar
  37. Salinari F, Giosuè S, Tubiello FN, Rettori A, Rossi V, Spanna F, Rosenzwieg C, Gullino ML (2006) Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Glob Chang Biol 12:1299–1307CrossRefGoogle Scholar
  38. Santos JA, Leite S (2009) Long-term variability of the temperature time series recorded at Lisbon. J Appl Stat 36:323–337CrossRefGoogle Scholar
  39. Santos JA, Corte-Real J, Leite SM (2005) Weather regimes and their connection to the winter rainfall in Portugal. Int J Climatol 25:33–50CrossRefGoogle Scholar
  40. Santos JA, Corte-Real J, Leite SM (2007) Atmospheric large-scale dynamics during the 2004/2005 winter drought in Portugal. Int J Climatol 27:571–586CrossRefGoogle Scholar
  41. Santos JA, Andrade C, Corte-Real J, Leite SM (2009) The role of large-scale eddies in the occurrence of precipitation deficits in Portugal. Int J Climatol 29:1493–1507CrossRefGoogle Scholar
  42. Schultz HR (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine Res 6:2–12CrossRefGoogle Scholar
  43. Schultz HR, Stoll M (2010) Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Aust J Grape Wine Res 16:4–24CrossRefGoogle Scholar
  44. Sepúlveda G, Kliewer WM, Ryugo K (1986) Effect of high temperature on grapevines (Vitis vinifera L.). I. Translocation of 14C-Photosynthates. Am J Enol Vitic 37:13–19Google Scholar
  45. Spellman G (1999) Wine, weather and climate. Weather 54:230–239Google Scholar
  46. Tate AB (2001) Global warming’s impact on wine. J Wine Res 12:95–109CrossRefGoogle Scholar
  47. Trenberth KE et al (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  48. Ulbrich U, Pinto JG, Kupfer H, Leckebusch GC, Spangehl T, Reyers M (2008) Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J Clim 21:1669–1679CrossRefGoogle Scholar
  49. van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55:207–217Google Scholar
  50. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, UKGoogle Scholar
  51. Webb LB, Whetton PH, Barlow EWR (2008a) Modelling the relationship between climate, winegrape price and winegrape quality in Australia. Clim Res 36:89–98CrossRefGoogle Scholar
  52. Webb LB, Whetton PH, Barlow EWR (2008b) Climate change and winegrape quality in Australia. Clim Res 36:99–111CrossRefGoogle Scholar
  53. White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci USA 103:11217–11222CrossRefGoogle Scholar

Copyright information

© ISB 2010

Authors and Affiliations

  • João A. Santos
    • 1
    • 3
  • Aureliano C. Malheiro
    • 1
  • Melanie K. Karremann
    • 2
  • Joaquim G. Pinto
    • 2
  1. 1.Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB)University of Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.Institute for Geophysics and MeteorologyUniversity of CologneCologneGermany
  3. 3.Departamento de FísicaUniversidade de Trás-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations