Abstract
Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.
Similar content being viewed by others
References
Badescu V (1997) Verification of some very simple clear and cloudy sky model to evaluate global solar irradiance. Sol Energy 61:251–264
Brühl Ch, Zdunkowski W (1983) An approximate calculation method for parallel and diffuse solar irradiances on inclined surfaces in the presence of obstructing mountain or buildings. Arch Meteorol Geophys Bioclimatol B 32:111–129
Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ Model Softw 13:373–384
Ceballos JC, Moura GB de A (1997) Solar irradiation assessment using meteosat 4-Vis imagery. Solar Energy 60:209–219
Clark RP, Edholm OG (1985) Man and his thermal environment. Arnold, London
Craggs C, Conway EM, Pearsall NM (2000) Statistical investigation of the optimal averaging time for solar irradiance on horizontal and vertical surfaces in the UK. Sol Energy 68:79–187
Czeplak G, Kasten F (1987) Parametrisierung der atmosphärischen Wärmestrahlung bei bewölktem Himmel. Meteorol Rdsch 40:184–187
Diak GR, Bland WL, Mecikalski JR, Anderson MC (2000) Satellite-based estimates of longwave radiation for agricultural applications. Agric For Meteorol 103:349–355
Falkenberg G, Bolz HM (1949) Neue Bestimmung der Konstanten der Angströmschen Strahlungsformel. Z Meteorol 3:97
Fanger PO (1972) Thermal comfort. McGraw-Hill, New York
Frank SF, Gerding RB, O’Rourke PA, Terhung WH (1981) An urban radiation obstruction model. Bound-Lay Meteorol 20:259–264
Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictiveindex of human response to the thermal environment. ASHRAETrans 92:709–731
Gopinathan KK (1992) Estimation of hourly global radiation and diffuse solar radiation from hourly sunshine duration. Sol Energy 48:3–5
Gueymard C (2000) Prediction and performance assessment of mean hourly global radiation. Sol Energy 68:285–303
Gul MS, Muneer T, Kambezidis HD (1998) Models for obtaining solar radiation from other meteorological data. Sol Energy 64:99–108
Höppe P (1993) Heat balance modelling. Experientia 49:741–746
Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75
ISO (1983) ISO 7730: Moderate thermal environments—Determination of the PMV and PPD indices and specification of the conditions of thermal comfort. International Organization for Standardization, Geneva
Iziomon MG, Mayer H (2001) Performance of solar radiation models—a case study. Agric For Meteorol 110:1–11
Iziomon MG, Mayer H, Matzarakis A (2003) Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization. J Atmos Sol-Terr Phys 65:1107–1116
Jendritzky G, Nübler W (1981) A model analysing the urban thermal environment in physiologically significant terms. Arch Meteorol Geophys Bioclimatol B 29:313–326
Jendritzky G, Menz H, Schirmer H, Schmidt-Kessen W (1990) Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Beitr Akad Raumforsch Landesplan, No. 114
Jessel W (1983) Die diffuse Himmelstrahlung. Eine vergleichende Darstellung der Bestrahlungsstärke bezogen auf eine kugelförmige und eine ebene horizontale Empfangsfläche. Arch Meteorol Geophys Bioclimatol B 32:23–52
Johansson E, Emmanuel R (2006) The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int J Biometeorol 51:119–133
Kaempfert W (1949) Zur Frage der Besonnung enger Strassen. Meteorol Rdsch 2:222–227
Kaempfert W (1951) Ein Phasendiagramm der Besonnung. Meteorol Rdsch 4:141–144
Kanda M, Kawai T, Nagakawa K (2005) A simple theoretical radiation scheme for regular building arrays. Bound-Lay Meteorol 114:71–90
Kasten F (1980) A simple parametrization of the pyrheliometric formula for determining the Linke turbidity factor. Meteorol Rdsch 33:124–127
Kasten F, Young AT (1989) Revised optical air mass tables and approximation formula. Appl Optics 28:4735–4738
Kemmoku Y, Orita S, Nakagawa S, Sakakibara T (1999) Daily insolation forecasting using a multi-stage neural network. Sol Energy 66:193–199
Kerslake D McK (1972) The stress of hot environments. Cambridge University Press, Cambridge
Littlefair P (2001) Daylight, sunlight and solar gain in the urban environment. Sol Energy 70:177–185
Marki A, Antonic O (1999) Annual models of monthly mean hourly direct, diffuse, and global radiation at ground. Meteorol Z NF 8:91–95
Matzarakis A, Mayer H (2008) Importance of urban meteorological stations—the example of Freiburg, Germany. In: Mayer H (ed) Celebrating the 50Years of the Meteorological Institute, Albert-Ludwigs-University ofFreiburg, Germany. Ber Meteorol Inst Univ Freiburg Nr. 17, pp 101–110
Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334
Mayer H (1993) Urban bioclimatology. Experientia 49:957–963
Mayer H, Holst J, Dostal P, Imbery F, Schindler D (2008) Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorol Z 17:241–250
Meek DW (1997) Estimation of maximum possible daily global radiation. Agric For Meteorol 87:223–241
Mohsen MA (1979) Solar radiation and courtyard house forms—I. A mathematical model. Build Environ 14:89–106
Mora-Lopez LL, Sidrach-de-Cardona M (1998) Multicaptive arma models to generate hourly series of global irradiation. Sol Energy 63:283–291
Monteith JL, Unsworth M (1990) Principles of environmental physics, 2nd edn. Elsevier, Oxford
Nunez M, Eliasson I, Lindgren J (2000) Spatial variation of incoming longwave radiation in Göteborg, Sweden. Theor Appl Climatol 67:181–192
Oke TR (1987) Boundary layer climates. Methuen, London
Olseth JA, Skartveit A (1993) Characteristics of hourly global irradiance modelled from cloud data. Sol Energy 51:197–204
Power H (2001) Estimating atmospheric turbidity from climate data. Atmos Environ 35:125–134
Prata AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Q J R Meteorol Soc 122:1127–1151
Revfeim KJA (1997) On the relationship between radiation and mean daily sunshine. Agric For Meteorol 86:183–191
Roderick ML (1999) Estimating the diffuse component from daily and monthly measurements of global radiation. Agric For Meteorol 95:169–185
Salsibury JW, D’Aria DM (1992) Emissivity of terrestrial material in the 8–14 μm atmospheric window. Remote Sens Environ 42:83–106
Santamouris M, Mihalakakou G, Psiloglou B, Eftaxias G, Asimakopoulos DN (1999) Modeling the global irradiation on the earth´s surface using atmospheric deterministic and intelligent data-driven techniques. J Climate 12:3105–3116
Sen Z (1998) Fuzzy algorithm for estimation of solar radiation from sunshine duration. Sol Energy 63:39–49
Teller J, Azar S (2001) Townscope II—a computer system to support solar access decision-making. Sol Energy 70:187–200
Terjung WH, Louie S (1974) A climatic model of urban energy budgets. Geogr Anal 6:341–367
Thorsson S, Lindqvist M, Lindqvist S (2004) Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. Int J Biometeorol 48:149–156
Thorsson S, Lindberg F, Eliasson I, Holmer B (2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993
Valko P (1966) Die Himmelsstrahlung in ihrer Beziehung zu verschiedenen Parametern. Arch Meteorol Geophys Bioclimatol B14:337–359
VDI (1994) VDI 3789, Part 2: Environmental meteorology. Interactions between atmosphere and surfaces; calculation of the short- and long wave radiation. Beuth, Berlin
VDI (1998) VDI 3787, Part I: Environmental Meteorology, Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning at regional level. Part I: Climate. Beuth, Berlin
VDI (2001) VDI 3789, Part 3: Environmental Meteorology, interactions between atmosphere and surfaces; calculation of spectral irradiances in the solar wavelength range. Beuth, Berlin
Winslow CEA, Herrington LP, Gagge AP (1936) A new method of particional calorimetry. Am J Physiol 116:641–655
Zdunkowski W, Brühl Ch (1983) A fast approximate method for the calculation of the infrared radiation balance within city street cavities. Arch Meteorol Geophys Bioclimatol B 33:237–241
Acknowledgements
Thanks a million to RayMan users for their suggestions and validations. Both represent the basis for further development of the model.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Matzarakis, A., Rutz, F. & Mayer, H. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54, 131–139 (2010). https://doi.org/10.1007/s00484-009-0261-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00484-009-0261-0