International Journal of Biometeorology

, Volume 53, Issue 4, pp 355–367 | Cite as

Solar radiation transmission in and around canopy gaps in an uneven-aged Nothofagus betuloides forest

  • Alvaro Promis
  • Dirk Schindler
  • Albert Reif
  • Gustavo Cruz
Original Paper

Abstract

The transmission of direct, diffuse and global solar radiation in and around canopy gaps occurring in an uneven-aged, evergreen Nothofagus betuloides forest during the growing season (October 2006–March 2007) was estimated by means of hemispherical photographs. The transmission of solar radiation into the forest was affected not only by a high level of horizontal and vertical heterogeneity of the forest canopy, but also by low angles of the sun’s path. The below-canopy direct solar radiation appeared to be variable in space and time. On average, the highest amount of transmitted direct solar radiation was estimated below the undisturbed canopy at the southeast of the gap centre. The transmitted diffuse and global solar radiation above the forest floor exhibited lower variability and, on average, both were higher at the centre of the canopy gaps. Canopy structure and stand parameters were also measured to explain the variation in the below-canopy solar radiation in the forest. The model that best fit the transmitted below-canopy direct solar radiation was a growth model, using plant area index with an ellipsoidal angle distribution as the independent variable (R2 = 0.263). Both diffuse and global solar radiation were very sensitive to canopy openness, and for both cases a quadratic model provided the best fit for these data (R2 = 0.963 and 0.833, respectively). As much as 75% and 73% of the variation in the diffuse and global solar radiation, respectively, were explained by a combination of stand parameters, namely basal area, crown projection, crown volume, stem volume, and average equivalent crown radius.

Keywords

Nothofagus betuloides Uneven-aged forest Hemispherical photographs Below-canopy solar radiation transmission Tierra del Fuego 

Definitions

BA

Basal area (m2 ha−1)

CP

Crown area projection (m2)

CP

Average crown area projection per plot (m2)

CL

Crown length (m)

CO

Canopy openness (%)

CR

Average equivalent crown radius per plot (m)

CSA

Crown surface area (m2)

CV

Crown volume (m3)

D

Stocking density (trees ha−1)

DBH

Diameter at breast height (cm)

DIF

Transmitted diffuse solar radiation during the growing season (%)

DIR

Transmitted direct solar radiation during the growing season (%)

GC

Gap centre

GF

Gap fraction (%)

GLO

Transmitted global solar radiation during the growing season (%)

Le-60

Plant area index calculated using the mean tilt angle of the foliage integrated over zenith angles from 0–60° (m2 m−2)

Le-75

As above, but integrated over zenith angles from 0–75° (m2 m−2)

Le-E

Plant area index employing an ellipsoidal angle distribution (m2 m−2)

NGE

Northwestern gap edge

NUC

Northwestern undisturbed canopy

R

Equivalent crown radius (m)

SGE

Southeastern gap edge

SUC

Southeastern undisturbed canopy

SV

Stem volume (m3 ha−1)

References

  1. Anderson MC (1964a) Light relations of terrestrial plant communities and their measurement. Biol Rev Camb Philos Soc 39:425–486. doi:10.1111/j.1469-185X.1964.tb01164.x CrossRefGoogle Scholar
  2. Anderson MC (1964b) Studies of the woodland light climate: II. Seasonal variation in the light climate. J Ecol 52:643–663. doi:10.2307/2257853 CrossRefGoogle Scholar
  3. Baldocchi D, Hutchison B, Matt D, McMillen R (1984) Seasonal variations in the radiation regime within an oak-hickory forest. Agric For Meteorol 33:177–191. doi:10.1016/0168-1923(84)90069-8 CrossRefGoogle Scholar
  4. Barnes BV, Zak DR, Denton SR, Spurr SH (1998) Forest ecology, 4th edn. Wiley, New YorkGoogle Scholar
  5. Bartemucci P, Messier C, Canham CD (2006) Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Can J For Res 36:2065–2079. doi:10.1139/X06-088 CrossRefGoogle Scholar
  6. Battaglia MA, Mou P, Pallik B, Mitchell RJ (2002) The effect of spatially variable overstory on the understory light environment of an open-canopied longleaf pine forest. Can J For Res 32:1984–1991. doi:10.1139/x02-087 CrossRefGoogle Scholar
  7. Bazzaz FA (1996) Plants in changing environments. Linking physiological, population, and community ecology. Cambridge University Press, CambridgeGoogle Scholar
  8. Brokaw NVL (1985) Treefalls, regrowth, and community in tropical forests. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic, London, pp 53–69Google Scholar
  9. Brunner A (1998) A light for spatially explicit forest stand models. For Ecol Manag 107:19–46CrossRefGoogle Scholar
  10. Brunner A (2002) Hemispherical photography and image analysis with hemIMAGE and Adobe Photoshop. Horsholm. Available from http://www.umb.no/ina/ansatte/andrb/Brunner_2002_hemIMAGE.pdf
  11. Butorovic N (2003) Resumen meteorológico año 2002, estación “Jorge C. Schythe” (53°08′S; 70°53′O; 6 m s.n.m.). An Inst Patagonia 31:123–130Google Scholar
  12. Butorovic N (2004) Resumen meteorológico año 2003, estación “Jorge C. Schythe” (53°08′S; 70°53′O; 6 m s.n.m.). An Inst Patagonia 32:79–86Google Scholar
  13. Butorovic N (2005) Resumen meteorológico año 2004. Estación “Jorge C. Schythe” (53°08′S; 70°53′O; 6 m s.n.m.). An Inst Patagonia 33:65–71Google Scholar
  14. Caldentey J, Promis A, Schmidt H, Ibarra M (1999/2000) Variación microclimática causada por una corta de protección en un bosque de lenga (Nothofagus pumilio). Cienc For 14:51–59Google Scholar
  15. Canham CD, Marks PL (1985) The response of woody plants to disturbance: patterns of establishment and growth. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic, London, pp 197–216Google Scholar
  16. Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J For Res 20:620–631. doi:10.1139/x90-084 CrossRefGoogle Scholar
  17. Canham CD, Finzi AC, Pacala SW, Burbank DH (1994) Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can J For Res 24:337–349. doi:10.1139/x94-046 CrossRefGoogle Scholar
  18. Chen JM (1996) Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric For Meteorol 80:135–163. doi:10.1016/0168-1923(95)02291-0 CrossRefGoogle Scholar
  19. Clearwater MJ, Nifinluri T, van Gardingen PR (1999) Forest fire smoke and a test of hemispherical photography for predicting understory light in Bornean tropical rain forest. Agric For Meteorol 97:129–139. doi:10.1016/S0168-1923(99)00058-1 CrossRefGoogle Scholar
  20. Collet C, Chenost C (2006) Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. Forestry 79:489–502. doi:10.1093/forestry/cpl033 CrossRefGoogle Scholar
  21. Comeau PG (2001) Relationships between stand parameters and understorey light in boreal aspen stands. BC J Ecosyst Manage 1(2):8Google Scholar
  22. Comeau PG, Heineman JL (2003) Predicting understory light microclimate from stand parameters in young paper birch (Betula papyrifera Marsh.) stands. For Ecol Manag 180:303–315CrossRefGoogle Scholar
  23. Comeau P, Heineman J, Newsome T (2006) Evaluation of relationships between understory light and aspen basal area in the British Columbia central interior. For Ecol Manag 226:80–87CrossRefGoogle Scholar
  24. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi:10.1126/science.199.4335.1302 PubMedCrossRefGoogle Scholar
  25. De Freitas CR, Enright NJ (1995) Microclimatic differences between and within canopy gaps in a temperate rainforest. Int J Biometeorol 38:188–193. doi:10.1007/BF01245387 CrossRefGoogle Scholar
  26. Denslow JS (1980) Gap partitioning among tropical rainforest trees. Biotropica 12:47–55. doi:10.2307/2388156 CrossRefGoogle Scholar
  27. Engelbrecht BM, Herz HM (2001) Evaluation of different methods to estimate understorey light conditions in tropical forests. J Trop Ecol 17:207–224. doi:10.1017/S0266467401001146 CrossRefGoogle Scholar
  28. Franklin JF, Van Pelt R (2004) Spatial aspects of structural complexity in old-growth forests. J For 102:22–28Google Scholar
  29. Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA): imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, BC, and the Institute of Ecosystem Studies, Millbrook, New YorkGoogle Scholar
  30. Geiger R, Aron RH, Todhunter P (2003) The climate near the ground, 6th edn. Rowman and Littlefield, LanhamGoogle Scholar
  31. Grant RH (1997) Partitioning of biologically active radiation in plant canopies. Int J Biometeorol 40:26–40. doi:10.1007/BF02439408 CrossRefGoogle Scholar
  32. Gray AN, Spies TA, Easter MJ (2002) Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Can J Res 32:332–343. doi:10.1139/x01-200 CrossRefGoogle Scholar
  33. Hale SE (2001) Light regime beneath Sitka spruce plantations in northern Britain: preliminary results. For Ecol Manag 151:61–66CrossRefGoogle Scholar
  34. Hale SE (2003) The effect of thinning intensity on the below-canopy light environment in a Sitka spruce plantation. For Ecol Manag 179:341–349CrossRefGoogle Scholar
  35. Hale SE, Edwards C (2002) Comparison and digital hemispherical photography across a wide range of canopy densities. Agric Meteorol 112:51–56. doi:10.1016/S0168-1923(02)00042-4 CrossRefGoogle Scholar
  36. Hardy JP, Melloh R, Koenig G, Marks D, Winstral A, Pomeroy JW, Link T (2004) Solar radiation transmission through conifer canopies. Agric Meteorol 126:257–270. doi:10.1016/j.agrformet.2004.06.012 CrossRefGoogle Scholar
  37. Heinemann K, Kitzberger T (2006) Effects of position, understorey vegetation and coarse woody debris on tree regeneration in two environmentally contrasting forests of north-western Patagonia: a manipulative approach. J Biogeogr 33:1357–1367. doi:10.1111/j.1365-2699.2006.01511.x CrossRefGoogle Scholar
  38. Holst T, Mayer H (2005) Radiation components of beech stands in Southwest Germany. Meteorol Z 14:107–115. doi:10.1127/0941-2948/2005/0010 CrossRefGoogle Scholar
  39. Holst T, Hauser S, Kirchgäßner A, Matzarakis A, Mayer H, Schindler D (2004) Measuring and modelling plant area index in beech stands. Int J Biometeorol 48:192–201. doi:10.1007/s00484-004-0201-y PubMedCrossRefGoogle Scholar
  40. Holst T, Rost J, Mayer H (2005) Net radiation balance for two forested slopes on opposite sides of a valley. Int J Biometeorol 49:275–284. doi:10.1007/s00484-004-0251-1 PubMedCrossRefGoogle Scholar
  41. Hutchison BA, Matt DR (1977) The distribution of solar radiation within a deciduous forest. Ecol Monogr 47:185–207. doi:10.2307/1942616 CrossRefGoogle Scholar
  42. Lieffers VJ, Messier C, Stadt KJ, Gendron F, Comeau PG (1999) Predicting and managing light in the understory of boreal forests. Can J Res 29:796–811. doi:10.1139/cjfr-29-6-796 CrossRefGoogle Scholar
  43. Machado J, Reich PB (1999) Evaluation of several measures of canopy openness as predictors of photosynthetic photon flux density in deeply shaded conifer-dominated forest understory. Can J Res 29:1438–1444. doi:10.1139/cjfr-29-9-1438 CrossRefGoogle Scholar
  44. Mayer H, Holst T, Schindler D (2002) Mikroklima in Buchenbeständen—Teil I: photosynthetisch aktive Strahlung. Forstw Cbl 121:301–321. doi:10.1046/j.1439-0337.2002.02038.x CrossRefGoogle Scholar
  45. Norman JM, Campbell GS (1989) Canopy structure. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology: field methods and instrumentation. Chapman and Hall, London, pp 301–325Google Scholar
  46. Oliver CD, Larson BC (1996) Forest stand dynamics, Updateth edn. Wiley, New YorkGoogle Scholar
  47. Piboule A, Collet C, Frochot H, Dhôte J-F (2005) Reconstructing crown shape from stem diameter and tree position to supply light models. I. Algorithms and comparison of light simulations. Ann Sci 62:645–657. doi:10.1051/forest:2005071 CrossRefGoogle Scholar
  48. Pinno BD, Lieffers VJ, Stadt KJ (2001) Measuring and modelling the crown and light transmission characteristics of juvenile aspen. Can J Res 31:1930–1939. doi:10.1139/cjfr-31-11-1930 CrossRefGoogle Scholar
  49. Promis A (2009) Natural small-scale canopy gaps and below-canopy solar radiation effects on the regeneration patterns in a Nothofagus betuloides forest —a case study from Tierra del Fuego, Chile. PhD dissertation, University of Freiburg, GermanyGoogle Scholar
  50. Promis A, Ibarra M, Schmidt A, Hidalgo F (2007) Antecedentes dasométricos. In: Cruz G, Caldentey J (eds) Caracterización, silvicultura y uso de los bosques de Coihue de Magallanes (Nothofagus betuloides) en la XII Región de Chile. Facultad de Ciencias Forestales, Universidad de Chile, Santiago, Chile, pp 46–50Google Scholar
  51. Rebertus AJ, Veblen TT (1993) Structure and tree-fall gap dynamics of old-growth Nothofagus forests in Tierra del Fuego, Argentina. J Veg Sci 4:641–654. doi:10.2307/3236129 CrossRefGoogle Scholar
  52. Reifsnyder WE, Furnival GM, Horowitz JL (1971/1972) Spatial and temporal distribution of solar radiation beneath forest canopies. Agric Meteorol 9:21–37. doi:10.1016/0002-1571(71)90004-5 CrossRefGoogle Scholar
  53. Rich PM (1990) Characterizing plant canopies with hemispherical photographs. In: Goel NS, Norman JM (eds) Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. Remote Sens Rev 5:13–29Google Scholar
  54. Rich PM, Clark DB, Clark DA, Oberbauer SF (1993) Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agric Meteorol 65:107–127. doi:10.1016/0168-1923(93)90040-O CrossRefGoogle Scholar
  55. Rich PM, Wood J, Vieglais DA, Burek K, Webb N (1999) Guide to HemiView: software for analysis of hemispherical photography. Delta-T Devices Ltd, Cambridge. Available from http://www.delta-t.co.uk/support-article.html?article=faq2005100703399
  56. Ricklefs RE (1977) Environmental heterogeneity and plant species diversity: a hypothesis. Am Nat 111:376–381. doi:10.1086/283169 CrossRefGoogle Scholar
  57. Rodríguez R, Quezada M (2003) Fagaceae. In: Marticorena C, Rodríguez R (eds) Flora de Chile, vol 2(2). Universidad de Concepción, Concepción, pp 64–76Google Scholar
  58. Roxburgh JR, Kelly D (1995) Uses and limitations of hemispherical photography for estimating forest light environments. N Z J Ecol 19:213–217Google Scholar
  59. Runkle JR (1982) Patterns of disturbance in some old-growth mesic forest of eastern North America. Ecology 63:1533–1546. doi:10.2307/1938878 CrossRefGoogle Scholar
  60. Sampson DA, Smith FW (1993) Influence of canopy architecture on light penetration in lodgepole pine (Pinus contorta var. latifolia) forests. Agric Meteorol 64:63–79. doi:10.1016/0168-1923(93)90094-X CrossRefGoogle Scholar
  61. Santana A (2006) Resumen meteorológico año 2005, estación “Jorge C. Schythe” (53°08′S; 70°53′O; 6 m s.n.m.). An Inst Patagonia 34:81–90Google Scholar
  62. Santana A (2007) Resumen meteorológico año 2006, estación “Jorge C. Schythe” (53°08′S; 70°53′O; 6 m s.n.m.). An Inst Patagonia 35:81–89Google Scholar
  63. SMN Secretaría de Minería de la Nación de la República Argentina (2007) < http://www.mineria.gov.ar/estudios/irn/tierradelfuego/tablametypluvio.asp?pr=m12 >, last accessed March 2009
  64. Sokal RR, Rohlf FJ (2000) Biometry. The principles and practice of statistics in biological research, 3rd edn. Freeman, New YorkGoogle Scholar
  65. Sonohat G, Balandier P, Ruchaud F (2004) Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests. Ann Sci 61:629–641. doi:10.1051/forest:2004061 CrossRefGoogle Scholar
  66. Spies TA, Franklin JF, Klopsch M (1990) Canopy gaps in Douglas-fir forests of the Cascade Mountains. Can J Res 20:649–658. doi:10.1139/x90-087 CrossRefGoogle Scholar
  67. Steven MD, Unsworth MH (1980) The angular distribution and interception of diffuse solar radiation below overcast skies. Q J R Metab Soc 106:57–61. doi:10.1002/qj.49710644705 CrossRefGoogle Scholar
  68. Tuhkanen S (1992) The climate of Tierra del Fuego from vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Ann Bot Fenn 145:1–64Google Scholar
  69. Vales DJ, Bunnell FL (1988) Relationships between transmission of solar radiation and coniferous forest stand characteristics. Agric Meteorol 43:201–223. doi:10.1016/0168-1923(88)90049-4 CrossRefGoogle Scholar
  70. Van Pelt R, Franklin JF (2000) Influence of canopy structure on the understorey environment in tall, old-growth, conifer forests. Can J Res 30:1231–1245. doi:10.1139/cjfr-30-8-1231 CrossRefGoogle Scholar
  71. Veblen TT (1979) Structure and dynamics of Nothofagus forest near timberline in South-Central Chile. Ecology 60:937–945. doi:10.2307/1936862 CrossRefGoogle Scholar
  72. Veblen TT, Veblen AT, Schlegel FM (1979) Understorey patterns in mixed evergreen-deciduous Nothofagus forests in Chile. J Ecol 67:809–823. doi:10.2307/2259216 CrossRefGoogle Scholar
  73. Veblen TT, Schlegel FM, Escobar B (1980) Structure and dynamics of old-growth Nothofagus forests in the Valdivian Andes, Chile. J Ecol 68:1–31. doi:10.2307/2259240 CrossRefGoogle Scholar
  74. Veblen TT, Schlegel FM, Oltremari JV (1983) Temperate broad-leaved evergreen forests of South America. In: Ovington JD (ed) Temperate broad-leaved evergreen forests. Elsevier, Amsterdam, pp 5–31Google Scholar
  75. Veblen TT, Donoso C, Kitzberger T, Rebertus AJ (1996) Ecology of southern Chilean and Argentinean Nothofagus forests. In: Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven, pp 293–353Google Scholar
  76. Wagner S (1994) Strahlungsschätzung in Wäldern durch hemisphärische Fotos—Methode und Anwendung. PhD dissertation, University of Göttingen, GermanyGoogle Scholar
  77. Wagner S (1996) Übertragung strahlungsrelevanter Wetterinformation aus punktuellen PAR-Sensordaten in grossen Versuchsflächenanlagen mit Hilfe hemisphärische Fotos. Allg Forst Jagdztg 167:34–40Google Scholar
  78. Weiss SB (2000) Vertical and temporal distribution of insolation in gaps in an old-growth coniferous forest. Can J Res 30:1953–1964. doi:10.1139/cjfr-30-12-1953 CrossRefGoogle Scholar
  79. Welles JM, Norman JM (1991) Instrument for indirect measurement of canopy architecture. Agron J 83:818–825CrossRefGoogle Scholar
  80. Wood J (2001) Canopy LAI calculation. HemiView application note. ftp://ftp.dynamax.com/HemiView/LAI_Calculation_in_Excel.pdf
  81. Wright EF, Coates KD, Canham CD, Bartemucci P (1998) Species variability in growth response to light across climatic regions in northwestern British Columbia. Can J Res 28:871–886. doi:10.1139/cjfr-28-6-871 CrossRefGoogle Scholar

Copyright information

© ISB 2009

Authors and Affiliations

  • Alvaro Promis
    • 1
    • 3
  • Dirk Schindler
    • 2
  • Albert Reif
    • 1
  • Gustavo Cruz
    • 3
  1. 1.Institute of SilvicultureUniversity of FreiburgFreiburgGermany
  2. 2.Meteorological InstituteUniversity of FreiburgFreiburgGermany
  3. 3.Department of SilvicultureUniversity of ChileCasillaChile

Personalised recommendations