Skip to main content

Advertisement

Log in

Solar radiation transmission in and around canopy gaps in an uneven-aged Nothofagus betuloides forest

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The transmission of direct, diffuse and global solar radiation in and around canopy gaps occurring in an uneven-aged, evergreen Nothofagus betuloides forest during the growing season (October 2006–March 2007) was estimated by means of hemispherical photographs. The transmission of solar radiation into the forest was affected not only by a high level of horizontal and vertical heterogeneity of the forest canopy, but also by low angles of the sun’s path. The below-canopy direct solar radiation appeared to be variable in space and time. On average, the highest amount of transmitted direct solar radiation was estimated below the undisturbed canopy at the southeast of the gap centre. The transmitted diffuse and global solar radiation above the forest floor exhibited lower variability and, on average, both were higher at the centre of the canopy gaps. Canopy structure and stand parameters were also measured to explain the variation in the below-canopy solar radiation in the forest. The model that best fit the transmitted below-canopy direct solar radiation was a growth model, using plant area index with an ellipsoidal angle distribution as the independent variable (R 2 = 0.263). Both diffuse and global solar radiation were very sensitive to canopy openness, and for both cases a quadratic model provided the best fit for these data (R 2 = 0.963 and 0.833, respectively). As much as 75% and 73% of the variation in the diffuse and global solar radiation, respectively, were explained by a combination of stand parameters, namely basal area, crown projection, crown volume, stem volume, and average equivalent crown radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BA:

Basal area (m2 ha−1)

CP:

Crown area projection (m2)

CP:

Average crown area projection per plot (m2)

CL :

Crown length (m)

CO:

Canopy openness (%)

CR :

Average equivalent crown radius per plot (m)

CSA :

Crown surface area (m2)

CV :

Crown volume (m3)

D:

Stocking density (trees ha−1)

DBH:

Diameter at breast height (cm)

DIF:

Transmitted diffuse solar radiation during the growing season (%)

DIR:

Transmitted direct solar radiation during the growing season (%)

GC:

Gap centre

GF:

Gap fraction (%)

GLO:

Transmitted global solar radiation during the growing season (%)

Le-60:

Plant area index calculated using the mean tilt angle of the foliage integrated over zenith angles from 0–60° (m2 m−2)

Le-75:

As above, but integrated over zenith angles from 0–75° (m2 m−2)

Le-E:

Plant area index employing an ellipsoidal angle distribution (m2 m−2)

NGE:

Northwestern gap edge

NUC:

Northwestern undisturbed canopy

R:

Equivalent crown radius (m)

SGE:

Southeastern gap edge

SUC:

Southeastern undisturbed canopy

SV :

Stem volume (m3 ha−1)

References

  • Anderson MC (1964a) Light relations of terrestrial plant communities and their measurement. Biol Rev Camb Philos Soc 39:425–486. doi:10.1111/j.1469-185X.1964.tb01164.x

    Article  Google Scholar 

  • Anderson MC (1964b) Studies of the woodland light climate: II. Seasonal variation in the light climate. J Ecol 52:643–663. doi:10.2307/2257853

    Article  Google Scholar 

  • Baldocchi D, Hutchison B, Matt D, McMillen R (1984) Seasonal variations in the radiation regime within an oak-hickory forest. Agric For Meteorol 33:177–191. doi:10.1016/0168-1923(84)90069-8

    Article  Google Scholar 

  • Barnes BV, Zak DR, Denton SR, Spurr SH (1998) Forest ecology, 4th edn. Wiley, New York

    Google Scholar 

  • Bartemucci P, Messier C, Canham CD (2006) Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Can J For Res 36:2065–2079. doi:10.1139/X06-088

    Article  Google Scholar 

  • Battaglia MA, Mou P, Pallik B, Mitchell RJ (2002) The effect of spatially variable overstory on the understory light environment of an open-canopied longleaf pine forest. Can J For Res 32:1984–1991. doi:10.1139/x02-087

    Article  Google Scholar 

  • Bazzaz FA (1996) Plants in changing environments. Linking physiological, population, and community ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Brokaw NVL (1985) Treefalls, regrowth, and community in tropical forests. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic, London, pp 53–69

    Google Scholar 

  • Brunner A (1998) A light for spatially explicit forest stand models. For Ecol Manag 107:19–46

    Article  Google Scholar 

  • Brunner A (2002) Hemispherical photography and image analysis with hemIMAGE and Adobe Photoshop. Horsholm. Available from http://www.umb.no/ina/ansatte/andrb/Brunner_2002_hemIMAGE.pdf

  • Butorovic N (2003) Resumen meteorológico año 2002, estación “Jorge C. Schythe” (53°08′S; 70°53′O; 6 m s.n.m.). An Inst Patagonia 31:123–130

    Google Scholar 

  • Butorovic N (2004) Resumen meteorológico año 2003, estación “Jorge C. Schythe” (53°08′S; 70°53′O; 6 m s.n.m.). An Inst Patagonia 32:79–86

    Google Scholar 

  • Butorovic N (2005) Resumen meteorológico año 2004. Estación “Jorge C. Schythe” (53°08′S; 70°53′O; 6 m s.n.m.). An Inst Patagonia 33:65–71

    Google Scholar 

  • Caldentey J, Promis A, Schmidt H, Ibarra M (1999/2000) Variación microclimática causada por una corta de protección en un bosque de lenga (Nothofagus pumilio). Cienc For 14:51–59

    Google Scholar 

  • Canham CD, Marks PL (1985) The response of woody plants to disturbance: patterns of establishment and growth. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic, London, pp 197–216

    Google Scholar 

  • Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J For Res 20:620–631. doi:10.1139/x90-084

    Article  Google Scholar 

  • Canham CD, Finzi AC, Pacala SW, Burbank DH (1994) Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can J For Res 24:337–349. doi:10.1139/x94-046

    Article  Google Scholar 

  • Chen JM (1996) Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric For Meteorol 80:135–163. doi:10.1016/0168-1923(95)02291-0

    Article  Google Scholar 

  • Clearwater MJ, Nifinluri T, van Gardingen PR (1999) Forest fire smoke and a test of hemispherical photography for predicting understory light in Bornean tropical rain forest. Agric For Meteorol 97:129–139. doi:10.1016/S0168-1923(99)00058-1

    Article  Google Scholar 

  • Collet C, Chenost C (2006) Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. Forestry 79:489–502. doi:10.1093/forestry/cpl033

    Article  Google Scholar 

  • Comeau PG (2001) Relationships between stand parameters and understorey light in boreal aspen stands. BC J Ecosyst Manage 1(2):8

    Google Scholar 

  • Comeau PG, Heineman JL (2003) Predicting understory light microclimate from stand parameters in young paper birch (Betula papyrifera Marsh.) stands. For Ecol Manag 180:303–315

    Article  Google Scholar 

  • Comeau P, Heineman J, Newsome T (2006) Evaluation of relationships between understory light and aspen basal area in the British Columbia central interior. For Ecol Manag 226:80–87

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi:10.1126/science.199.4335.1302

    Article  PubMed  CAS  Google Scholar 

  • De Freitas CR, Enright NJ (1995) Microclimatic differences between and within canopy gaps in a temperate rainforest. Int J Biometeorol 38:188–193. doi:10.1007/BF01245387

    Article  Google Scholar 

  • Denslow JS (1980) Gap partitioning among tropical rainforest trees. Biotropica 12:47–55. doi:10.2307/2388156

    Article  Google Scholar 

  • Engelbrecht BM, Herz HM (2001) Evaluation of different methods to estimate understorey light conditions in tropical forests. J Trop Ecol 17:207–224. doi:10.1017/S0266467401001146

    Article  Google Scholar 

  • Franklin JF, Van Pelt R (2004) Spatial aspects of structural complexity in old-growth forests. J For 102:22–28

    Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA): imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, BC, and the Institute of Ecosystem Studies, Millbrook, New York

    Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2003) The climate near the ground, 6th edn. Rowman and Littlefield, Lanham

    Google Scholar 

  • Grant RH (1997) Partitioning of biologically active radiation in plant canopies. Int J Biometeorol 40:26–40. doi:10.1007/BF02439408

    Article  Google Scholar 

  • Gray AN, Spies TA, Easter MJ (2002) Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Can J Res 32:332–343. doi:10.1139/x01-200

    Article  Google Scholar 

  • Hale SE (2001) Light regime beneath Sitka spruce plantations in northern Britain: preliminary results. For Ecol Manag 151:61–66

    Article  Google Scholar 

  • Hale SE (2003) The effect of thinning intensity on the below-canopy light environment in a Sitka spruce plantation. For Ecol Manag 179:341–349

    Article  Google Scholar 

  • Hale SE, Edwards C (2002) Comparison and digital hemispherical photography across a wide range of canopy densities. Agric Meteorol 112:51–56. doi:10.1016/S0168-1923(02)00042-4

    Article  Google Scholar 

  • Hardy JP, Melloh R, Koenig G, Marks D, Winstral A, Pomeroy JW, Link T (2004) Solar radiation transmission through conifer canopies. Agric Meteorol 126:257–270. doi:10.1016/j.agrformet.2004.06.012

    Article  Google Scholar 

  • Heinemann K, Kitzberger T (2006) Effects of position, understorey vegetation and coarse woody debris on tree regeneration in two environmentally contrasting forests of north-western Patagonia: a manipulative approach. J Biogeogr 33:1357–1367. doi:10.1111/j.1365-2699.2006.01511.x

    Article  Google Scholar 

  • Holst T, Mayer H (2005) Radiation components of beech stands in Southwest Germany. Meteorol Z 14:107–115. doi:10.1127/0941-2948/2005/0010

    Article  Google Scholar 

  • Holst T, Hauser S, Kirchgäßner A, Matzarakis A, Mayer H, Schindler D (2004) Measuring and modelling plant area index in beech stands. Int J Biometeorol 48:192–201. doi:10.1007/s00484-004-0201-y

    Article  PubMed  CAS  Google Scholar 

  • Holst T, Rost J, Mayer H (2005) Net radiation balance for two forested slopes on opposite sides of a valley. Int J Biometeorol 49:275–284. doi:10.1007/s00484-004-0251-1

    Article  PubMed  CAS  Google Scholar 

  • Hutchison BA, Matt DR (1977) The distribution of solar radiation within a deciduous forest. Ecol Monogr 47:185–207. doi:10.2307/1942616

    Article  Google Scholar 

  • Lieffers VJ, Messier C, Stadt KJ, Gendron F, Comeau PG (1999) Predicting and managing light in the understory of boreal forests. Can J Res 29:796–811. doi:10.1139/cjfr-29-6-796

    Article  Google Scholar 

  • Machado J, Reich PB (1999) Evaluation of several measures of canopy openness as predictors of photosynthetic photon flux density in deeply shaded conifer-dominated forest understory. Can J Res 29:1438–1444. doi:10.1139/cjfr-29-9-1438

    Article  Google Scholar 

  • Mayer H, Holst T, Schindler D (2002) Mikroklima in Buchenbeständen—Teil I: photosynthetisch aktive Strahlung. Forstw Cbl 121:301–321. doi:10.1046/j.1439-0337.2002.02038.x

    Article  Google Scholar 

  • Norman JM, Campbell GS (1989) Canopy structure. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology: field methods and instrumentation. Chapman and Hall, London, pp 301–325

    Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics, Updateth edn. Wiley, New York

    Google Scholar 

  • Piboule A, Collet C, Frochot H, Dhôte J-F (2005) Reconstructing crown shape from stem diameter and tree position to supply light models. I. Algorithms and comparison of light simulations. Ann Sci 62:645–657. doi:10.1051/forest:2005071

    Article  Google Scholar 

  • Pinno BD, Lieffers VJ, Stadt KJ (2001) Measuring and modelling the crown and light transmission characteristics of juvenile aspen. Can J Res 31:1930–1939. doi:10.1139/cjfr-31-11-1930

    Article  Google Scholar 

  • Promis A (2009) Natural small-scale canopy gaps and below-canopy solar radiation effects on the regeneration patterns in a Nothofagus betuloides forest —a case study from Tierra del Fuego, Chile. PhD dissertation, University of Freiburg, Germany

  • Promis A, Ibarra M, Schmidt A, Hidalgo F (2007) Antecedentes dasométricos. In: Cruz G, Caldentey J (eds) Caracterización, silvicultura y uso de los bosques de Coihue de Magallanes (Nothofagus betuloides) en la XII Región de Chile. Facultad de Ciencias Forestales, Universidad de Chile, Santiago, Chile, pp 46–50

    Google Scholar 

  • Rebertus AJ, Veblen TT (1993) Structure and tree-fall gap dynamics of old-growth Nothofagus forests in Tierra del Fuego, Argentina. J Veg Sci 4:641–654. doi:10.2307/3236129

    Article  Google Scholar 

  • Reifsnyder WE, Furnival GM, Horowitz JL (1971/1972) Spatial and temporal distribution of solar radiation beneath forest canopies. Agric Meteorol 9:21–37. doi:10.1016/0002-1571(71)90004-5

    Article  Google Scholar 

  • Rich PM (1990) Characterizing plant canopies with hemispherical photographs. In: Goel NS, Norman JM (eds) Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. Remote Sens Rev 5:13–29

    Google Scholar 

  • Rich PM, Clark DB, Clark DA, Oberbauer SF (1993) Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agric Meteorol 65:107–127. doi:10.1016/0168-1923(93)90040-O

    Article  Google Scholar 

  • Rich PM, Wood J, Vieglais DA, Burek K, Webb N (1999) Guide to HemiView: software for analysis of hemispherical photography. Delta-T Devices Ltd, Cambridge. Available from http://www.delta-t.co.uk/support-article.html?article=faq2005100703399

  • Ricklefs RE (1977) Environmental heterogeneity and plant species diversity: a hypothesis. Am Nat 111:376–381. doi:10.1086/283169

    Article  Google Scholar 

  • Rodríguez R, Quezada M (2003) Fagaceae. In: Marticorena C, Rodríguez R (eds) Flora de Chile, vol 2(2). Universidad de Concepción, Concepción, pp 64–76

    Google Scholar 

  • Roxburgh JR, Kelly D (1995) Uses and limitations of hemispherical photography for estimating forest light environments. N Z J Ecol 19:213–217

    Google Scholar 

  • Runkle JR (1982) Patterns of disturbance in some old-growth mesic forest of eastern North America. Ecology 63:1533–1546. doi:10.2307/1938878

    Article  Google Scholar 

  • Sampson DA, Smith FW (1993) Influence of canopy architecture on light penetration in lodgepole pine (Pinus contorta var. latifolia) forests. Agric Meteorol 64:63–79. doi:10.1016/0168-1923(93)90094-X

    Article  Google Scholar 

  • Santana A (2006) Resumen meteorológico año 2005, estación “Jorge C. Schythe” (53°08′S; 70°53′O; 6 m s.n.m.). An Inst Patagonia 34:81–90

    Google Scholar 

  • Santana A (2007) Resumen meteorológico año 2006, estación “Jorge C. Schythe” (53°08′S; 70°53′O; 6 m s.n.m.). An Inst Patagonia 35:81–89

    Google Scholar 

  • SMN Secretaría de Minería de la Nación de la República Argentina (2007) < http://www.mineria.gov.ar/estudios/irn/tierradelfuego/tablametypluvio.asp?pr=m12 >, last accessed March 2009

  • Sokal RR, Rohlf FJ (2000) Biometry. The principles and practice of statistics in biological research, 3rd edn. Freeman, New York

    Google Scholar 

  • Sonohat G, Balandier P, Ruchaud F (2004) Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests. Ann Sci 61:629–641. doi:10.1051/forest:2004061

    Article  Google Scholar 

  • Spies TA, Franklin JF, Klopsch M (1990) Canopy gaps in Douglas-fir forests of the Cascade Mountains. Can J Res 20:649–658. doi:10.1139/x90-087

    Article  Google Scholar 

  • Steven MD, Unsworth MH (1980) The angular distribution and interception of diffuse solar radiation below overcast skies. Q J R Metab Soc 106:57–61. doi:10.1002/qj.49710644705

    Article  Google Scholar 

  • Tuhkanen S (1992) The climate of Tierra del Fuego from vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Ann Bot Fenn 145:1–64

    Google Scholar 

  • Vales DJ, Bunnell FL (1988) Relationships between transmission of solar radiation and coniferous forest stand characteristics. Agric Meteorol 43:201–223. doi:10.1016/0168-1923(88)90049-4

    Article  Google Scholar 

  • Van Pelt R, Franklin JF (2000) Influence of canopy structure on the understorey environment in tall, old-growth, conifer forests. Can J Res 30:1231–1245. doi:10.1139/cjfr-30-8-1231

    Article  Google Scholar 

  • Veblen TT (1979) Structure and dynamics of Nothofagus forest near timberline in South-Central Chile. Ecology 60:937–945. doi:10.2307/1936862

    Article  Google Scholar 

  • Veblen TT, Veblen AT, Schlegel FM (1979) Understorey patterns in mixed evergreen-deciduous Nothofagus forests in Chile. J Ecol 67:809–823. doi:10.2307/2259216

    Article  CAS  Google Scholar 

  • Veblen TT, Schlegel FM, Escobar B (1980) Structure and dynamics of old-growth Nothofagus forests in the Valdivian Andes, Chile. J Ecol 68:1–31. doi:10.2307/2259240

    Article  Google Scholar 

  • Veblen TT, Schlegel FM, Oltremari JV (1983) Temperate broad-leaved evergreen forests of South America. In: Ovington JD (ed) Temperate broad-leaved evergreen forests. Elsevier, Amsterdam, pp 5–31

    Google Scholar 

  • Veblen TT, Donoso C, Kitzberger T, Rebertus AJ (1996) Ecology of southern Chilean and Argentinean Nothofagus forests. In: Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven, pp 293–353

    Google Scholar 

  • Wagner S (1994) Strahlungsschätzung in Wäldern durch hemisphärische Fotos—Methode und Anwendung. PhD dissertation, University of Göttingen, Germany

  • Wagner S (1996) Übertragung strahlungsrelevanter Wetterinformation aus punktuellen PAR-Sensordaten in grossen Versuchsflächenanlagen mit Hilfe hemisphärische Fotos. Allg Forst Jagdztg 167:34–40

    Google Scholar 

  • Weiss SB (2000) Vertical and temporal distribution of insolation in gaps in an old-growth coniferous forest. Can J Res 30:1953–1964. doi:10.1139/cjfr-30-12-1953

    Article  Google Scholar 

  • Welles JM, Norman JM (1991) Instrument for indirect measurement of canopy architecture. Agron J 83:818–825

    Article  Google Scholar 

  • Wood J (2001) Canopy LAI calculation. HemiView application note. ftp://ftp.dynamax.com/HemiView/LAI_Calculation_in_Excel.pdf

  • Wright EF, Coates KD, Canham CD, Bartemucci P (1998) Species variability in growth response to light across climatic regions in northwestern British Columbia. Can J Res 28:871–886. doi:10.1139/cjfr-28-6-871

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Chilean Project FONDEF D02I1080, the German Academic Exchange Service (DAAD), and the International ‘Forestry in Transition’ Ph.D. Programme of the Faculty of Forest and Environmental Sciences of the University of Freiburg. We are also grateful to the Programa de Bosques Patagónicos of the University of Chile and the field work support provided by the Wildlife Conservation Society in Chile (WCS). The authors would like to extend their gratitude to Mr. Joaquín Soto, owner of the forest in the Río Cóndor (Tierra del Fuego, Chile). We also thank D. Butler-Manning for comments and proofreading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Promis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Promis, A., Schindler, D., Reif, A. et al. Solar radiation transmission in and around canopy gaps in an uneven-aged Nothofagus betuloides forest. Int J Biometeorol 53, 355–367 (2009). https://doi.org/10.1007/s00484-009-0222-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-009-0222-7

Keywords

Navigation