Poaceae pollen in Galicia (N.W. Spain): characterisation and recent trends in atmospheric pollen season

  • V. Jato
  • F. J. Rodríguez-Rajo
  • M. C. Seijo
  • M. J. Aira
Original Paper


Airborne Poaceae pollen counts are greatly influenced by weather-related parameters, but may also be governed by other factors. Poaceae pollen is responsible for most allergic reactions in the pollen-sensitive population of Galicia (Spain), and it is therefore essential to determine the risk posed by airborne pollen counts. The global climate change recorded over recent years may prompt changes in the atmospheric pollen season (APS). This survey used airborne Poaceae pollen data recorded for four Galician cities since 1993, in order to characterise the APS and note any trends in its onset, length and severity. Pollen sampling was performed using Hirst-type volumetric traps; data were subjected to Spearman’s correlation test and regression models, in order to detect possible correlations between different parameters and trends. The APS was calculated using ten different methods, in order to assess the influence of each on survey results. Finally, trends detected for the major weather-related parameters influencing pollen counts over the study period were compared with those recorded over the last 30 years. All four cities displayed a trend towards lower annual total Poaceae pollen counts, lower peak values and a smaller number of days on which counts exceeded 30, 50 and 100 pollen grains/m3. Moreover, the survey noted a trend towards delayed onset and shorter duration of the APS, although differences were observed depending on the criteria used to define the first and the last day of the APS.


Poaceae Pollen Recent trends Galicia Atmospheric pollen season 


  1. Aira MJ, Jato V, Iglésias MI (2005) Calidad del aire. Polen y esporas en la Comunidad Gallega. Xunta de Galicia, Santiago de CompostelaGoogle Scholar
  2. Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275Google Scholar
  3. Arenas L, González C, Tabarés JM, Iglésias I, Méndez J, Jato V 1996 Sensibilización cutánea a pólenes en pacientes afectos de rinoconjuntivitis-asma en la población de Ourense en el año 1994-95. 1st. European Symp. On Aerobiol. Santiago de Compostela 93-94.Google Scholar
  4. Casal M, Basanta M, Garcia F (1984) La regeneración de los montes incendiados en Galicia. Universidad de Santiago de Compostela, Santiago de CompostelaGoogle Scholar
  5. Clary J, Savé R, Biel C, Herralde F (2004) Water relations in competitive interactions of Mediterranean grasses and shrubs. Ann Appl Biol 144(2):149–155. doi:10.1111/j.1744-7348.2004.tb00328.x CrossRefGoogle Scholar
  6. Dalda G 1978 Los efectos del fuego en la vegetación forestal de Galicia. Naturalia Hispanica, 16. ICONA. MadridGoogle Scholar
  7. Davies RR, Smith LP (1973) Forecasting the start and severity of the hay fever season. Clin Allergy 3:263–267. doi:10.1111/j.1365-2222.1973.tb01332.x PubMedCrossRefGoogle Scholar
  8. D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, van Cauwenberge P (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62(9):976–990. doi:10.1111/j.1398-9995.2007.01393.x PubMedCrossRefGoogle Scholar
  9. Dickinson CE, Dodd JL (1976) Phenological pattern in the Shortgrass Prairie. Am Midl Nat 96(2):367–378. doi:10.2307/2424076 CrossRefGoogle Scholar
  10. Driessen MNBM, Van Herpen RMA, Moelands RPM, Spieksma FTM (1989) Prediction of the start of the grass pollen season for the western part of the Netherlands. Grana 28:37–44CrossRefGoogle Scholar
  11. Emberlin J (1997) Grass, tree and weed pollens. In: Kay AB (ed) Allergy and allergic diseases, vol 2. Blackwell, OxfordGoogle Scholar
  12. Emberlin J, Smith M (2006) A 30 day-ahead forecast model for grass pollen in north London, United Kingdom. Int J Biometeorol 50:233–242. doi:10.1007/s00484-005-0010-y PubMedCrossRefGoogle Scholar
  13. Emberlin J, Savage J, Jones S (1993) Annual variations in grass pollen seasons in London, 1961–1990: trends and forecast models. Clin Exp Allergy 23:911–918. doi:10.1111/j.1365-2222.1993.tb00275.x PubMedCrossRefGoogle Scholar
  14. Emberlin J, Mullins J, Corden J, Jones S, Millington W, Brooke M, Savage M (1999) Regional variations in grass pollen season in the UK, long-term trends and forecast. Clin Exp Allergy 29:347–356. doi:10.1046/j.1365-2222.1999.00369.x PubMedCrossRefGoogle Scholar
  15. Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimaki A (2002) Responses in the start of Betula (birch) pollen season to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170. doi:10.1007/s00484-002-0139-x PubMedCrossRefGoogle Scholar
  16. Férnández-González D, Valencia-Barrera R, Vega A, Díaz de la Guardia C, Trigo MM, Cariñanos P, Guàrdia A, Pretiñes C, Rodríguez-Rajo FJ (1999) Analysis of grass pollen concentrations in the atmosphere of several spanish sites. Polen 10:127–136Google Scholar
  17. Frei T (1998) The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grasses. Grana 37:172–179Google Scholar
  18. Frei T (2000) A change from grass pollen induced allergy to tree pollen induced allergy: 30 years of pollen observation in Switzerland. Aerobiologia 16:407–416. doi:10.1023/A:1026532307090 CrossRefGoogle Scholar
  19. Frei T, Gassner E (2008) Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. Int J Biometeorol 52(7):667–674. doi:10.1007/s00484-008-0159-2 PubMedCrossRefGoogle Scholar
  20. French N, Sauer RH (1974) Phenological studies and modelling in grassland. In: Leith H (ed) Phenology and Seasonality modelling. Springer, New YorkGoogle Scholar
  21. Galán C, Emberlin J, Domínguez E, Bryant RH, Villamandos F (1995) A comparative analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana 34:189–198Google Scholar
  22. Galán C, Cariñanos P, Alcázar P, Domínguez-Vilches E (2007) Spanish aerobiological network: Management and quality control. Servicio de Publicaciones University of Córdoba, Córdoba, SpainGoogle Scholar
  23. García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, Gutierrez M, Aira MJ, Roure J, Ruiz L, Trigo MM, Domínguez-Vilches E (2006) Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13:209–224PubMedGoogle Scholar
  24. Green BJ, Dettmann M, Yli-Panula E, Rutherford S, Simpson R (2004) Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia a 5-year record, 1994–1999. Int J Biometeorol 48:172–178. doi:10.1007/s00484-004-0204-8 PubMedCrossRefGoogle Scholar
  25. Hyde HA (1972) Atmospheric pollen and spores in relation to allergy. Clin Allergy 2:153–179. doi:10.1111/j.1365-2222.1972.tb01280.x PubMedCrossRefGoogle Scholar
  26. IPCC 2007. Climate Change 2007. The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller (eds.). Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  27. Jäger S, Spieksma FthM, Nolard N. (1991) Fluctuations and trends in airborne concentrations of some abundant pollen types, monitored at Vienna, Leiden and Brussels. Grana 30:309–312Google Scholar
  28. Jato V, Rodríguez-Rajo FJ, Méndez J, Aira MJ (2002) Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season. Int J Biometeorol 46(4):176–184. doi:10.1007/s00484-002-0132-4 PubMedCrossRefGoogle Scholar
  29. Jato V, Rodríguez-Rajo FJ, Alcázar P, De Nuntiis P, Galán C, Mandrioli P (2006) The definition of Pollen Season influence aerobiological results? Aerobiologia 22:13–25. doi:10.1007/s10453-005-9011-x CrossRefGoogle Scholar
  30. León Ruíz E 2008 Estudios de fenología floral y aerobiología de la familia Poaceae. Doctoral Thesis. University of Córdoba. Spain.Google Scholar
  31. López Quintas L 2007 Estudio de la evolución de usos del suelo en el Ayuntamiento de Pereiro de Aguiar de 1956 a 2003, mediante la implantación de un SIG. Proyecto Fin de Carrera. Universidad de VigoGoogle Scholar
  32. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C 2007 Global Climate Projections. In Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assesment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  33. Negrini AC, Voltolini S, Arobba CTD (1992) Comparison between Urticaceae (Parietaria) pollen count and hay fever symptoms: assessment of a “threshold-value”. Aerobiologia 8:325–329. doi:10.1007/BF02272893 CrossRefGoogle Scholar
  34. Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden) 1973–1980. Grana 20:179–182Google Scholar
  35. Ong EK, Singh MB, Knox RB (1995) Grass pollen in the atmosphere of Melbourne: seasonal distribution over nine years. Grana 34:58–63Google Scholar
  36. Ram J, Singh SP (1988) Community level phenology of grassland above treeline in central Himalaya, India. Arct Alp Res 20:352–332. doi:10.2307/1551264 CrossRefGoogle Scholar
  37. Rantio-Lehtimaki A, Koivikko A, Kupias R, Makinen Y, Pohjola A (1991) Significance of sampling height of airborne particles for aerobiological information. Allergy 46:68–76. doi:10.1111/j.1398-9995.1991.tb00545.x PubMedCrossRefGoogle Scholar
  38. Rea (1995–2004) Review published by Spanish Aerobiological Network and Vegetal Biology Department from Malaga University. Rea. Vols 1–8.Google Scholar
  39. Rio González S 2005 El Cambio Climático y su influencia en la vegetación de Castilla y León (España). In Rivas Martínez et al. (Eds.), Itinera Geobotanica, Volume 16, University of León.Google Scholar
  40. Sánchez-Mesa JA, Smith M, Emberlin J, Allitt U, Caulton E, Galán C (2003) Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia 19:243–250. doi:10.1023/B:AERO.0000006597.44452.a3 CrossRefGoogle Scholar
  41. Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of relationships between flowering times and temperature at the national scale using long-term phenological record from the UK. Int J Biometeorol 44:82–87. doi:10.1007/s004840000049 PubMedCrossRefGoogle Scholar
  42. Spieksma FTM, Corden J, Detandt M, Millington WM, Nikkels H, Nolard N, Schoenmakers CH, Watcher R, Weger LA, Willens R, Emberlin J (2003) Quantitative trend in annual totals of five pollen-monitoring stations in western Europe. Aerobiologia 19:171–184. doi:10.1023/B:AERO.0000006528.37447.15 CrossRefGoogle Scholar
  43. Subiza J (2003) Gramíneas: Aerobiología y polinosis en España. Allergol Inmunol Clin 18(3):7–23Google Scholar
  44. Taylor PE, Jacobson KW, House JM, Glovsky MM (2007) Links between pollen, atopy and the asthma epidemic. Int Arch Allergy Immunol 144(2):162–170. doi:10.1159/000103230 PubMedCrossRefGoogle Scholar
  45. Torben BA (1991) A model to predict the beginning of the pollen season. Grana 30:269–275Google Scholar
  46. Yuan W, Zhou G, Han X, Wang Y (2007) Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem. Ecol Res 22:784–791. doi:10.1007/s11284-006-0318-z CrossRefGoogle Scholar

Copyright information

© ISB 2009

Authors and Affiliations

  • V. Jato
    • 1
  • F. J. Rodríguez-Rajo
    • 1
  • M. C. Seijo
    • 1
  • M. J. Aira
    • 2
  1. 1.Department of Plan Biology and Soil Sciences, Campus As Lagoas, Sciences Faculty, Polytechnic BuildingUniversity of VigoOurenseSpain
  2. 2.Department of Botany, Campus Sur, Faculty of PharmacyUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations