Advertisement

International Journal of Biometeorology

, Volume 53, Issue 4, pp 317–326 | Cite as

Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.)

  • Iñaki García de Cortázar-Atauri
  • Nadine Brisson
  • Jean Pierre Gaudillere
Original Paper

Abstract

The budburst stage is a key phenological stage for grapevine (Vitis vinifera L.), with large site and cultivar variability. The objective of the present work was to provide a reliable agro-meteorological model for simulating grapevine budburst occurrence all over France. The study was conducted using data from ten cultivars of grapevine (Cabernet Sauvignon, Chasselas, Chardonnay, Grenache, Merlot, Pinot Noir, Riesling, Sauvignon, Syrah, Ugni Blanc) and five locations (Bordeaux, Colmar, Angers, Montpellier, Epernay). First, we tested two commonly used models that do not take into account dormancy: growing degree days with a base temperature of 10°C (GDD10), and Riou’s model (RIOU). The errors of predictions of these models ranged between 9 and 21 days. Second, a new model (BRIN) was studied relying on well-known formalisms for orchard trees and taking into account the dormancy period. The BRIN model showed better performance in predicting budburst date than previous grapevine models. Analysis of the components of BRIN formalisms (calculation of dormancy, use of hourly temperatures, base temperature) explained the better performances obtained with the BRIN model. Base temperature was the main driver, while dormancy period was not significant in simulating budburst date. For each cultivar, we provide the parameter estimates that showed the best performance for both the BRIN model and the GDD model with a base temperature of 5°C.

Keywords

Vitis vinifera L. Budburst Dormancy Temperature response Base temperature 

References

  1. Alleweldt G (1963) Einfluss von klimafaktorem die zahl der inflorescenzen bei Reben. Wein-Wiss 18(2):61–70Google Scholar
  2. Baggiolini M (1952) Les stades repères dans le développement annuel de la vigne et leur utilisation pratique. Rev Romande Agric Vitic Arbor 8:4–6Google Scholar
  3. Bernstein Z (1984) L’amélioration de la régulation de débourrement dans les régions à hiver doux. Bull OIV 57:478–488Google Scholar
  4. Bidabe B (1965a) Contrôle de l’époque de floraison du pommier par une nouvelle conception de l’action de températures. C R Acad Agric Fr 49:934–945Google Scholar
  5. Bidabe B (1965b) L’action des températures sur l’évolution des bourgeons de l’entrée en dormance à la floraison. 96 Congrès Pomologique, pp 51–56Google Scholar
  6. Bindi M, Miglietta F, Gozzini B, Orlandini S, Seghi L (1997a) A simple model for simulation of growth and development in grapevine (Vitis vinifera L.). I. Model description. Vitis 36(2):67–71Google Scholar
  7. Bindi M, Miglietta F, Gozzini B, Orlandini S, Seghi L (1997b) A simple model for simulation of growth and development in grapevine (Vitis vinifera L.). II. Model validation. Vitis 36(2):73–76Google Scholar
  8. Bonhomme R (2000) Bases and limits to using “degree-day” units. Eur J Agron 13:1–10, doi: 10.1016/S1161-0301(00)00058-7 Google Scholar
  9. Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussière F, Cabidoche YM, Cellier P, Debaeke P, Gaudillère JP, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model STICS. Eur J Agron 18:309–332, doi: 10.1016/S1161-0301(02)00110-7 Google Scholar
  10. Carbonneau A, Riou C, Guyon D, Riom J, Schneider C (1992) Agrométéorologie de la vigne en France. EUR-OP, Luxembourg, p 168Google Scholar
  11. Cesaraccio C, Spano D, Snyder RL, Duce P (2004) Chilling and forcing model to predict bud-burst of crop and forest species. Agric For Meteorol 126:1–13, doi: 10.1016/j.agrformet.2004.03.010
  12. Champagnol F (1984) Eléments de physiologie de la vigne et viticulture générale. Champagnol, Saint-Gely-du-Fesc, FranceGoogle Scholar
  13. Chuine I (2000) A unified model for budburst of trees. J Theor Biol 207:337–347, doi: 10.1006/jtbi.2000.2178 Google Scholar
  14. Chuine I, Kramer K, Hänninen H (2003) Plant development models. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer, Milwaukee, pp 217–235Google Scholar
  15. Chuine I, Seguin B (2008) The history and current status of the French Phenology Networks. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski FE (eds) The history and current status of plant phenology in Europe. COST Office, Vammalan Kirjapaino Oy, pp 76–79Google Scholar
  16. Coombe BG (1995) Adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110, doi: 10.1111/j.1755-0238.1995.tb00086.x
  17. Crepinsek Z, Kajfez-Bogataj L, Bergant K (2006) Modelling of weather variability effect on fitophenology. Ecol Model 194:256–265, doi: 10.1016/j.ecolmodel.2005.10.020 Google Scholar
  18. De Melo-Abreu JP, Barranco D, Cordeiro AM, Tous J, Rogado BM, Villalobos FJ (2004) Modelling olive flowering date using chilling for dormancy release and thermal time. Agric For Meteorol 125:117–127, doi: 10.1016/j.agrformet.2004.02.009 Google Scholar
  19. Eichhorn KW, Lorenz DH (1977) Phönologische entwicklungsstadien der rebe. Nachrichtenbl Dtsch Pflanzenschutzdienst Braunschweig 29:119–120Google Scholar
  20. Galet P (1976) Précis de Viticulture. Dehan, Montpellier, FranceGoogle Scholar
  21. García de Cortázar-Atauri I, Brisson N, Seguin B, Gaudillere JP, Baculat B (2005) Simulation of budbreak date for vine. The BRIN model. Some applications in climate change study. In: Proceedings of XIV International GESCO Viticulture Congress, Geisenheim, Germany, 23–27 August, 2005, pp 485–490Google Scholar
  22. García de Cortázar-Atauri I (2006) Adaptation du modèle STICS à la vigne (Vitis vinifera L.). Utilisation dans le cadre d’une étude du changement climatique à l’échelle de la France. PhD thesis of Ecole Supérieur Nationale d’Agronomie de Montpellier. Available at: [http://www.inra.fr/ea/sources/index.php?page=detail_these&id=200]
  23. Gilreath PR, Buchanan DW (1981) Rest prediction model for low-chilling Sungold nectarine. J Am Soc Hortic Sci 106(4):426–429Google Scholar
  24. Gutierrez AP, Williams DW, Kido H (1985) A model of grape growth and development: the matematical structure and biological considerations. Crop Sci 25:721–728CrossRefGoogle Scholar
  25. Hänninen H, Slaney M, Linder S (2007) Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment. Tree Physiol 27(2):291–300 2007PubMedGoogle Scholar
  26. Jones GV (2003) Winegrape phenology. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer, Milwaukee, pp 523–540Google Scholar
  27. Jones GV, Duchene E, Tomasi D, Yuste J, Braslavksa O, Schultz H, Martinez C, Boso S, Langellier F, Perruchot C, Guimberteau G (2005) Changes in European winegrape phenology and relationships with climate. In: Proceedings of XIV International GESCO Viticulture Congress, Geisenheim, Germany, 23–27 August, 2005, pp 55–62Google Scholar
  28. Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22(3):371–377Google Scholar
  29. Liennard ME (2002) Contribution à l’étude de la prévision de la précocité de floraison et du déterminisme climatique des nécroses florales de l’Abricotier, Prunus armeniaca L., dans le contexte des changements climatiques. Institut National d’Horticulture, AngersGoogle Scholar
  30. Manly BFJ (1991) Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall, LondonGoogle Scholar
  31. McIntyre GN, Lider LA, Ferrari NL (1982) The chronological classification of grapevine phenology. Am J Enol Vitic 33(2):80–85Google Scholar
  32. Moncur MW, Rattigan K, Mackenzie DH, McIntyre GN (1989) Base temperatures for budbreak and leaf appearance of grapevines. Am J Enol Vitic 40(1):21–26Google Scholar
  33. Nigond J (1967) Recherches sur la dormance de la vigne. Ann Amelior Veget 9:I:107–152 II:197–232; III:273–338Google Scholar
  34. Oliveira M (1998) Calculation of budbreak and flowering base temperatures for Vitis vinifera cv. Touriga Francesa in the Douro Region of Portugal. Am J Enol Vitic 49(1):74–78Google Scholar
  35. Pouget R (1963) Recherches physiologiques sur le repos végétatif de la vigne (Vitis vinifera L.): la dormance des bourgeons et le mécanisme de sa disparition. PhD Thesis Bordeaux University & Ann Amelior Plantes 13 Special IssueGoogle Scholar
  36. Pouget R (1968) Nouvelle conception du seuil de croissance chez la vigne. Vitis 7:201–205Google Scholar
  37. Pouget R (1972) Considérations générales sur le rythme végétatif et la dormance des bourgeons de la vigne. Vitis 11:198–217Google Scholar
  38. Pouget R (1988) Le débourrement des bourgeons de la vigne: méthode de prévision et principes d’établissement d’une échelle de précocité de débourrement. Conn Vigne-Vin 22(2):105–123Google Scholar
  39. Rea R, Eccel E (2006) Phenological models for blooming of apple in a mountainous region. Int J Biometeorol 51:1–16, doi: 10.1007/s00484-006-0043-x Google Scholar
  40. Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completation of rest for Redhaven and Elberta peach trees. HortScience 9(4):331–332Google Scholar
  41. Richardson EA, Seeley SD, Walker RD, Anderson J, Ashcroft G (1975) Pheno-climatography of spring peach bud development. HortScience 10:236–237Google Scholar
  42. Riou C (1994) The effect of climate on grape ripening: application to the zoning of sugar content in the european community. CECA-CEE-CECA, LuxembourgGoogle Scholar
  43. Sarvas R (1974) Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Commun Inst For Fenn 84:1–101Google Scholar
  44. Schultz HR (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine Res 6:2–12, doi: 10.1111/j.1755-0238.2000.tb00156.x
  45. Sellers WD (1965) Physical climatology. University of Chicago Press, Chicago, ILGoogle Scholar
  46. Shaultout AD, Unrath CR (1983) Rest completion prediction model for Starkrimson Delicious apples. J Am Soc Hortic Sci 108(6):957–961Google Scholar
  47. Wallach D, Goffinet B (1987) Mean squared error of prediction in models for studying ecological and agronomics systems. Biometrics 43:561–573CrossRefGoogle Scholar
  48. Wallach D (2006) Evaluating crop models. In: Wallach D, Makowski D, Jones JW (eds) Working with dynamic crop models. Evaluating, analyzing, parameterizing and using them. Elsevier, Amsterdam, pp 6–37Google Scholar
  49. Webb LB, Whetton PH, Barlow EWR (2007) Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust J Grape Wine Res 13:165–175, doi: 10.1111/j.1755-0238.2007.tb00247.x Google Scholar
  50. Wermelinger B, Baumgärtner J, Gutierrez AP (1991) A demographic model of assimilation and allocation of carbon and nitrogen in grapevines. Ecol Model 53:1–26CrossRefGoogle Scholar
  51. Williams DW, Williams LE, Barnett WW, Kelley KM, Mckenry MV (1985a) Validation of a model for the growth and development of the Thompson seedless grapevine. I. Vegetative growth and fruit yield. Am J Enol Vitic 36:275–282Google Scholar
  52. Williams DW, Andris HL, Beede RH, Luvisi DA, Norton MVK, Williams LE (1985b) Validation of a model for the growth and development of the Thompsom Seedless grapevine. II. Phenology. Am J Enol Vitic 36:283–289Google Scholar
  53. Winkler AJ, Cook JA, Kliewer WM, Lider LA (1962) General viticulture. University of California Press, BerkeleGoogle Scholar

Copyright information

© ISB 2009

Authors and Affiliations

  • Iñaki García de Cortázar-Atauri
    • 1
  • Nadine Brisson
    • 1
  • Jean Pierre Gaudillere
    • 2
  1. 1.Unité AGROCLIMINRAAvignon cedex 9France
  2. 2.UMR Oenologie & AmpélologieINRAVillenave d’OrnonFrance

Personalised recommendations