Skip to main content

Urbanisation induces early flowering: evidence from Platanus acerifolia and Prunus cerasus

Abstract

The effect of towns on plant phenology, i.e. advancement of spring development compared with a rural environment, via the urban heat island (UHI) phenomenon, has been shown for many towns in many countries. This work combines experimental and observational methodology to provide a better and deeper view of climatic habitat in an urban context with a view to understanding the relationship between plant development and urban climate on the intra-urban scale (by taking into account town structure). A dense network of 17 meteorological stations was set up in Rennes, France, enabling us to identify and quantify climatic changes associated with the UHI. Meanwhile, phenological observations were made during early spring (March and April) in 2005 on Platanus acerifolia and Prunus cerasus to study the relationship between climatic and phenological data. The results show that there is both a climatic gradient and a developmental gradient corresponding to the type of urbanisation in the town of Rennes. The town influences plant phenology by reducing the diurnal temperature range and by increasing the minimum temperature as one approaches the town centre. The influence of ground cover type (plants or buildings) on development is also shown. The developmental phases of preflowering and flowering are influenced to differing extents by climatic variables. The period during which climatic variables are effective before a given developmental phase varies considerably. The preflowering phases are best correlated with the mean of the minimum air temperature for the 15-day period before the observation, whereas flowering appears to be more dependent on the mean of the daily diurnal temperature range for the 8 days preceding the observation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol 182:65–77

    Google Scholar 

  2. Benedict C, Geisler M, Trygg J, Huner N, Hurry V (2006) Consensus by Democraty. Using meta-analyses of microarray and genomic data to model the cold acclimatation signaling pathway in Arabidopsis. Plant Physiol 141:1219–1232, doi:10.1104/pp.106.083527

    PubMed  Article  CAS  Google Scholar 

  3. Cantat O (1989) Contribution à l’étude des variations du bilan d’énergie en région parisienne. Essai sur les bilans d’énergie dans les grandes métropoles. PhD Thesis, University Paris-4, 362 p and 254 p

  4. Carrega P (1994) Topoclimatologie et habitat. Revue d’Analyse Spatiale Quantitative et Appliquée, Th. Et., 35 & 36

  5. Chmielewski FM, Rotzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112, doi:10.1016/S0168-1923(01)00233-7

    Article  Google Scholar 

  6. Clergeau P, Croci S, Jokimäki J, Kaisanlahti-Jokimäki ML, Dinetti M (2006) Avifauna homogenisation by urbanisation: Analysis at different European latitudes. Biol Conserv 127:336–344, doi:10.1016/j.biocon.2005.06.035

    Article  Google Scholar 

  7. Daniel H, Lecamp E (2004) Distribution of three indigenous fern along a rural-urban gradient in the city of Angers, France. Urban For Urban Green 3:19–27, doi:10.1016/j.ufug.2004.04.001

    Article  Google Scholar 

  8. Davis Instrument Corp (2000) Davis Weather Monitor II Owner’s Manual. Davis Instruments, Hayward, USA

    Google Scholar 

  9. Defila C (1991) Pflanzenphänologie der Schweiz. Veroeffentlichungen, Switzerland

    Google Scholar 

  10. Defila C, Clot B (2001) Phytophenological trends in the Swiss Alps. Int J Biometeorol 45:203–207, doi:10.1007/s004840100101

    PubMed  Article  CAS  Google Scholar 

  11. Defila C, Jeanneret J (2007) Phänologie —ein Biomonitoring und seine Anwendungen Schweiz. Z Forstwes 5:98–104, doi:10.3188/szf.2007.0098

    Article  Google Scholar 

  12. Dreyer LL, Esler KJ, Zietsman J (2005) Flowering phenology of South African Oxalis—possible indicator of climate change? S Afr J Bot 72:150–156, doi:10.1016/j.sajb.2005.06.009

    Article  Google Scholar 

  13. Escourou G (ed) (1981) Climat et environnement. Les facteurs locaux du climat. Masson, Paris

  14. Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Am Assoc Adv Sci 296:1689–1691

    CAS  Google Scholar 

  15. Halliday KJ, Salter MG, Thingnaes E, Whitelam GC (2003) Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33:875–885, doi:10.1046/j.1365-313X.2003.01674.x

    PubMed  Article  CAS  Google Scholar 

  16. Heide OM (2008) Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci Horticult 115:309–314, doi:10.1016/j.scienta.2007.10.005

    Article  Google Scholar 

  17. Kvaalen H, Johnsen O (2007) Timing of bud set in Picea abies is regulated by a memory of temperature durind zygotic and somatic embryogenesis. New Phytol 177:49–59

    PubMed  Google Scholar 

  18. Lee DO (1992) Urban warming? An analysis of recent trends in London’s heat island. Weather 47:50–56

    Google Scholar 

  19. Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14, doi:10.1016/j.agrformet.2006.03.006

    Article  Google Scholar 

  20. Lu P, Yu Q, Liu J, Lee X (2006) Advance of tree-flowering dates in response to urban climate change. Agric For Meteorol 138:120–131, doi:10.1016/j.agrformet.2006.04.002

    Article  Google Scholar 

  21. Luo Z, Sun OJ, Ge Q, Xu W, Zheng J (2007) Phenological responses of plants to climate change in an urban environment. Ecol Res 22:507–514, doi:10.1007/s11284-006-0044-6

    Article  Google Scholar 

  22. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81, doi:10.1007/s004840000054

    PubMed  Article  CAS  Google Scholar 

  23. Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Change Biol 7:657–666, doi:10.1046/j.1365-2486.2001.00430.x

    Article  Google Scholar 

  24. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remiová V, Scheifinger H, Striz M, Susnik S, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1–8, doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  25. Myking T (1997) Effects of constant and fluctuating temperature on time to budburst in Betula pubescens and its relation to bud respiration. Trees (Berl) 12:107–112

    Google Scholar 

  26. Nieddu G, Giunta F, Mulas M (1990) Influence of postdormant temperatures on bloom time of four almond cultivars. Sci Horticult 43:63–67, doi:10.1016/0304-4238(90)90037-F

    Article  Google Scholar 

  27. Oke TR (ed) (1987) Boundary layer climates, 2nd edn. Routledge, London

  28. Peiling L, Qiang Y, Jiandong L, Xuhui L (2006) Advance of tree-flowering dates in response to urban climate change. Agric For Meteorol 138:120–131, doi:10.1016/j.agrformet.2006.04.002

    Article  Google Scholar 

  29. Pellissier V, Rozé F, Aguejdad R, Quénol H, Clergeau P (2008) Relationship between the soil seed bank, vegetation and soil fertility along an urbanisation gradient. Appl Veg Sci 11:325–333

    Article  Google Scholar 

  30. Peñuelas J, Fillela I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2003) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846, doi:10.1111/j.1469-8137.2004.01003.x

    Article  Google Scholar 

  31. Roetzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in Central Europe- differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44:60–66, doi:10.1007/s004840000062

    PubMed  Article  CAS  Google Scholar 

  32. Schwartz MD (1999) Advancing to full bloom: planning phenological research for the 21st century. Int J Biometeorol 42:113–118, doi:10.1007/s004840050093

    Article  Google Scholar 

  33. Setiyono TD, Weiss A, Specht J, Bastidas AM, Cassman KG, Dobermann A (2006) Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions. Field Crops Res 100:257–271, doi:10.1016/j.fcr.2006.07.011

    Article  Google Scholar 

  34. Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D (2006a) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191, doi:10.1016/j.tree.2005.11.019

    PubMed  Article  Google Scholar 

  35. Shochat E, Wareen PS, Faeth SH (2006b) Future directions in urban ecology. Trends Ecol Evol 21:661–662, doi:10.1016/j.tree.2006.09.007

    Article  Google Scholar 

  36. Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple response mediated by multiple phytochromes. Plant Cell Environ 20:840–844, doi:10.1046/j.1365-3040.1997.d01-104.x

    Article  Google Scholar 

  37. Sparks TH, Jeffree EP, Jeffree CE (2001) An examination of the relationship between flowering times and temperatures at the national scale using long-term phenological records for the UK. Int J Biometeorol 44:82–87, doi:10.1007/s004840000049

    Article  Google Scholar 

  38. Stewart D, Love W (1968) A general canonical correlation index. Psychol Bull 70:160–163, doi:10.1037/h0026143

    PubMed  Article  CAS  Google Scholar 

  39. United Nation Population Division (eds) (2008) World urbanization prospects: the 2007 Revision. Executive summary. U.N. Department of Economic and Social Affairs, New York

  40. Vallet J, Daniel H, Beaujouan V, Rozé F (2008) Plant species response to urbanization: comparison of isolated woodland patches in two cities of North-Western France. Landscape Ecol 23:1205–1217, doi:10.1007/s10980-008-9293-9

    Article  Google Scholar 

  41. Walther GR (2003) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185, doi:10.1078/1433-8319-00076

    Article  Google Scholar 

  42. Wielgolaski FE (1999) Starting dates and basics temperatures in phenological observations of plants. Int J Biometeorol 42:158–168, doi:10.1007/s004840050100

    Article  Google Scholar 

  43. Wolfe DW, Schwartz MW, Lakso AN (2005) Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. Int J Biometeorol 49:303–309, doi:10.1007/s00484-004-0248-9

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Pellissier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mimet, A., Pellissier, V., Quénol, H. et al. Urbanisation induces early flowering: evidence from Platanus acerifolia and Prunus cerasus . Int J Biometeorol 53, 287–298 (2009). https://doi.org/10.1007/s00484-009-0214-7

Download citation

Keywords

  • Urban heat island
  • Experimental phenology
  • Early spring phenology
  • Minimum temperature
  • Diurnal temperature range