Skip to main content
Log in

An improved estimation of daily clear-sky biologically EER from broadband global solar radiation

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

To establish a relation between biologically effective erythemal radiation (EER) and global solar radiation, the hourly and daily clear-sky broadband (310–2,800 nm) global solar radiation (G) and spectral ultraviolet radiation incident on a horizontal surface at Esfahan, Iran (32°37′N, 51°40′E) were measured during the period 2001–2005. Good correlations at statistically significant levels between the daily values of EER and the daily G were found. The seasonal variability of EER/G is also discussed and the correction factors are determined for inclusion of vertical column ozone and solar zenith angle (SZA) cycles. The comparison of the estimated daily EER against the independent observed EER revealed that under clear sky conditions the estimations are accurate to 10% or better over SZA of 10–60° and column ozone of 250–350 Dobson. The comparison of the results with the similar works that have used shorter period of experimental data showed more accurate estimates. The deduced relations could be used to a rough estimate of the daily EER from G in arid climate regions, where there is no measured UV radiation or there are instrumental and other difficulties encountered in measuring UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ao3 :

Ozone absorption coefficient for the waveband 300–316 nm (Dobson)−1

CF:

Cloud factor (%)

CIE:

Commission Internationale De L’e Clairage

EER:

Effective erythemal radiation (kJ m−2 day−1)

Gclear-sky :

Clear-sky global solar radiation at the surface (kJ m−2 day−1)

Gall-sky :

All-sky global solar radiation at the surface (kJ m−2 day−1)

K:

Correction factor for the effect of ozone and solar zenith angle

mi :

The monthly mean air mass at noon

MPE:

Mean percentage error (%)

n/N:

Ratio of bright sunshine hours

NCD:

Total number of clear-sky days

NDD:

Total number of dusty days

r :

Correlation coefficient

R 2 :

Coefficient of determination

RH (%):

Relative humidity (%)

SE (α):

Standard error of the intercepts (kJ m−2 day−1)

SE (β):

Standard error of the slope of equation (kJ m−2 day−1)

TCO:

Total column ozone

WOUDC:

World Ozone and UV Data Center

ΔΩ:

The monthly mean difference between TCO in a given month and long-term climatological value at the same month (Dobson)

References

  • Berger DS, Urbach F (1982) A climatology of sunburning ultraviolet radiation. J Photochem Photobiol 35:187–192

    Article  CAS  Google Scholar 

  • Canada J, Pedros G, Bosca JV (2003) Relationships between UV (0.290–0.385 mm) and broadband solar radiation hourly values in Valencia and Cordoba, Spain. Energy 28:199–217. doi:10.1016/S0360-5442(02)00111-1

    Article  Google Scholar 

  • De la Casinière A, Touré ML, Masserot D, Cabot T, Pinedo Vega JL (2002) Daily doses of biologically active UV radiation retrieved from commonly available parameters. Photochem Photobiol 76(2):171–175

    Article  Google Scholar 

  • Elhadidy MA, Abdel-Nabi DY, Kruss PD (1990) Ultraviolet solar radiation at Dhahran, Saudi Arabia. Sol Energy 44:315–319. doi:10.1016/0038-092X(90)90135-Y

    Article  Google Scholar 

  • Feister U, Grasnick KH (1992) Solar UV radiation measurements at Potsdam (52°22_N, 13°5_E). Sol Energy 49:541–548. doi:10.1016/0038-092X(92)90162-4

    Article  Google Scholar 

  • Foyo-Moreno I, Vida J, Alados-Arboledas L (1998) Ground based ultraviolet (290–385 nm) and broadband solar radiation measurements in south-eastern Spain. Int J Climatol 18:1389–1400. doi:10.1002/(SICI)1097-0088(1998100)18:12<1389::AID-JOC318>3.0.CO;2-N

    Article  Google Scholar 

  • Foyo-Moreno I, Vida J, Alados-Arboledas L (1999) A simple all weather model to estimate ultraviolet solar radiation (290–385 nm). J Appl Meteorol 38:1020–1025. doi:10.1175/1520-0450(1999)038<1020:ASAWMT>2.0.CO;2

    Article  Google Scholar 

  • Foyo-Moreno I, Alados I, Olmo FJ, Alados-Arboledas L (2003) The influence of cloudiness on UV global irradiance (295–385 nm). Agric Meteorol 120:101–111. doi:10.1016/j.agrformet.2003.08.023

    Article  Google Scholar 

  • IRIMO (2007) Iranian Meteorological Office, Data Center. Official home page, Online: http://www.irimet.net/irimo/synopH/ESFAHAN.txt

  • Handa O, Kokura S, Adachib S, Takagia T, Naitoc Y, Tanigawae T, Yoshidad N, Yoshikawab T (2006) Methylparaben potentiates UV-induced damage of skin keratinocytes. Toxicology 227:62–72

    Google Scholar 

  • Jacovides CP, Assimakopoulos VD, Tymvios FS, Theophilou K, Assimakopoulos DN (2006) Solar global UV (280-380 nm) radiation and its relationship with solar global radiation measured on the island of Cyprus. Energy 31:2728–2738

    Article  Google Scholar 

  • Kirchhoff VW, Silva A, Pinheiro K (2002) Wavelength dependence of aerosol optical thickness in the UV-B band. Geophys Res Lett 29(12):1620. doi:10.1029/2001 doi:10.1029/2001GL014141

    Article  Google Scholar 

  • Klein SA (1977) Calculation of monthly average insulation on tilted surfaces. Sol Energy 43(3):153–168

    Google Scholar 

  • Krzyscin JW, Jaroslawski J, Sobolewski PS (2003) Effects of clouds on the surface erythemal UV-B irradiance at northern midlatitudes: estimation from the observations taken at Belski, Poland (1999–2001). J Atmos Sol Terr Phys 65:457–467. doi:10.1016/S1364-6826(03)00004-X

    Article  Google Scholar 

  • Kylling A, Dahlback A, Mayer B (2000) The effect of clouds and surface albedo on UV irradiances at a high latitude site. Geophys Res Lett 27:1411–1414. doi:10.1029/1999GL011015

    Article  Google Scholar 

  • Lindfors A, Vuilleumier L (2005) Erythemal UV at Davos (Switzerland), 1926-2003, estimated using total ozone, sunshine duration, and snow depth. J Geophys Res D Atmospheres 110:1–15

    Google Scholar 

  • Luccini E, Cede A, Piacentini RD (2003) Effect of clouds on UV and total irradiance at Paradise Bay, Antarctic Peninsula, from a summer 2000 campaign. Theor Appl Climatol 75:105–116

    Google Scholar 

  • Madronich S, McKenzie RE, Björn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the earth’s surface. J Photochem Photobiol B Biol 46:5–19. doi:10.1016/S1011-1344(98)00182-1

    Article  CAS  Google Scholar 

  • Mahfoodh MB, Al-Ayed MS, Al-Dhafiri AM (2005) Measurement and assessment of ultraviolet radiation in Riyadh, Sudi Arabia. Int J Sustain Energy 23(1–2):31–38. doi:10.1080/01425910310001610529

    Google Scholar 

  • Malik AQ, Soon Khiong C (2007) Computation of solar ultraviolet radiation for Brunei Darussalam. Sci Technol Vis 3(4):23–32 ISESCO

    Google Scholar 

  • Martinez-Lozano JA, Casanovas AJ, Utrillas MP (1994) Comparison of global ultraviolet (290–385 nm) and global irradiation measured during the warm season in Valencia, Spain. Int J Climatol 14:93–102. doi:10.1002/joc.3370140108

    Article  Google Scholar 

  • Martinez-Lozano JA, Tena F, Utrillas MP (1999) Ratio of UV to global broad band irradiation in Valencia, Spain. Int J Climatol 19:903–911. doi:10.1002/(SICI)1097-0088(19990630)19:8<903::AID-JOC400>3.0.CO;2-N

    Article  Google Scholar 

  • McKenzie RL, Matthews WA, Johnston PV (1991) The relationship between erythemal UV and ozone, derived from spectral irradiance measurements. Geophys Res Lett 18:2262–2272. doi:10.1029/91GL02786

    Article  Google Scholar 

  • McKinlay AF, Diffey BL (1987) A reference action spectrum for ultraviolet induced erythemal in human skin. CIE-Hirek 6:17–22

    Google Scholar 

  • Mujahid AM (1994) Correlation between ultraviolet radiation and global radiation in Riyadh, Saudi Arabia. J Sol Energy Eng Trans ASME 116(1):63–66. doi:10.1115/1.2930067

    Article  Google Scholar 

  • Nagaraja CR, Takoshima T, Bradley WA, Lee TY (1984) Near ultraviolet radiation at the earth’s surface: measurements and model comparison. Tellus 36B:286–293

    Article  Google Scholar 

  • Ogunjobi KO, Kim YJ (2004) Ultraviolet (0.280–0.400 mm) and broadband solar hourly radiation at Kwangju, South Korea: analysis of their correlation with aerosol optical depth and clearness index. Atmos Res 71:193–214. doi:10.1016/j.atmosres.2004.05.001

    Article  Google Scholar 

  • Robaa SM (2004) A study of ultraviolet solar radiation at Cairo urban area, Egypt. Sol Energy 77:251–259. doi:10.1016/j.solener.2004.01.008

    Article  Google Scholar 

  • Sabziparvar AA (2000) Tropospheric Ozone and Surface Ultraviolet Radiation. Iranian J Space Earth Sci 182:21–27. in Persian

    Google Scholar 

  • Sabziparvar AA (2008) Estimation of clear-sky erythema radiation from broadband (300–3000 nm) solar radiation data in an arid climate. Int J Climatology 28: 000-000. doi:10.1002/joc.1848 (in Press)

  • Sabziparvar AA, Shetaee H (2007) Estimation of global solar radiation in arid and semi-arid climates of East and West Iran. Energy 32:649–655. doi:10.1016/j.energy.2006.05.005

    Article  Google Scholar 

  • Sabziparvar AA, Shine KP, Forster PMF (1999) A model-derived global climatology of UV irradiation at the Earth’s surface. J Photochem Photobiol 69(2):193–202

    CAS  Google Scholar 

  • Sabziparvar AA, Forster PM, Shine KP (1998) Changes in ultraviolet radiation due to stratospheric and tropospheric ozone changes since pre-industrial times. J Geophys Res 103(D20):26107–26113. doi:10.1029/98JD02277

    Article  CAS  Google Scholar 

  • Sadler GW (1992) Ultraviolet radiation at Edmonton, Alberta, Canada. Sol Energy 49:13–17. doi:10.1016/0038-092X(92)90121-P

    Article  Google Scholar 

  • Som AK (1992) Solar UV-B radiation measurements over Bahrain. Renew Energy 2(1):93–98. doi:10.1016/0960-1481(92)90065-B

    Article  Google Scholar 

  • Stammes K, Tsay SC, Wiscombe WJ, Jayawerera K (1988) Numerical stable algorithm for discrete-ordinate-method radiative transfer in multiple-scattering and emitting layered media. Appl Opt 27:2502–2509

    Article  Google Scholar 

  • Trabea AA, Salem AI (2001) Empirical relationship for ultraviolet solar radiation over Egypt. Egypt J Sol Energy 24:123–132

    Google Scholar 

  • Webb AR (2006) Who, what, where and when influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol 92(1):17–25. doi:10.1016/j.pbiomolbio.2006.02.004

    Article  PubMed  CAS  Google Scholar 

  • Webb A, Steven MD (1986) Daily total of solar UV-B radiation estimated from routine meteorological measurements. J Climatol 6:405–411. doi:10.1002/joc.3370060406

    Article  Google Scholar 

  • Zerefos C, Balis D, Tzortziou M, Bais A, Tourpail K, Meleti C, Bernhard G, Herman J (2001) A note on the interannual variations of UV-B erythemal doses and solar irradiance from ground-based and satellite observations. Ann Geophys 19(1):115–120

    Article  Google Scholar 

Download references

Acknowledgements

The first author is grateful to Mr. M. Karimi from Esfahan Ozone Data Center (Iran) for his effort in preparing the UV and ozone data. This work was the continuance of the research project, which was previously funded by the Bu-Ali Sina University. We also appreciate the anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Sabziparvar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabziparvar, A.A., Farahani, M.M. An improved estimation of daily clear-sky biologically EER from broadband global solar radiation. Int J Biometeorol 53, 239–245 (2009). https://doi.org/10.1007/s00484-009-0209-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-009-0209-4

Keywords

Navigation