Prediction of air temperature for thermal comfort of people using sleeping bags: a review


Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. ASHRAE (2004) ASHRAE Standard 55 thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Atlanta, GA

  2. ASHRAE (2005) ASHRAE Handbook—Fundamentals (SI edn). American Society of Heating, Refrigerating, and Air Conditioning Engineers, Atlanta, GA

  3. ASTM (1996) ASTM F1720 standard method for measuring the thermal insulation of a sleeping bag using a heated manikin. American Society for Testing and Materials Annual Book of ASTM Standards-Part 11.03, Conshohocken, PA

  4. Burton AC, Edholm OG (1955) Man in a cold environment. Arnold, London

    Google Scholar 

  5. Cena K, Davey N, Erlandson T (2003) Thermal comfort and clothing insulation of resting tent occupants at high altitude. Appl Ergon 34(6):543–550, doi:10.1016/S0003-6870(03)00084-X

    PubMed  Article  Google Scholar 

  6. den Hartog E, Weder M, Camenzind M (2001) Evaluation of sleeping bags by subjects and a manikin (torso) at low temperature. Proceedings of the Fourth International Meeting on Thermal Manikins, Switzerland, pp 1–5

  7. EN 13537 (2002) Requirements for sleeping bags. European Committee for Standardization, Brussels

    Google Scholar 

  8. Evans JM (2003) Evaluating comfort with varying temperatures: a graphic design tool. Energy Build 35:87–93, doi:10.1016/S0378-7788(02)00083-X

    Article  Google Scholar 

  9. Gagge AP, Burton AC, Bazett HC (1941) A practical system of units for the description of heat exchange of man with his environment. Science 94:428–430, doi:10.1126/science.94.2445.428

    PubMed  Article  Google Scholar 

  10. Goldman R (1988) Review of the extreme cold weather sleeping system. Comfort Technology, Norwood, MA

    Google Scholar 

  11. Haskell EH, Palca JW, Walker JM, Berger RJ, Heller HC (1981) The effects of high and low ambient temperatures on human sleep stages. Electroencephalogr Clin Neurophysiol 51:494–501, doi:10.1016/0013-4694(81)90226-1

    PubMed  Article  CAS  Google Scholar 

  12. Havenith G (2002) Moisture accumulation in sleeping bags at subzero temperatures-effect of semipermeable and impermeable covers. Tex Res J 72(4):281–284, doi:10.1177/004051750207200401

    Article  CAS  Google Scholar 

  13. Havenith G, Holmer I, Parsons KC (2002) Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy Build 34:581–591, doi:10.1016/S0378-7788(02)00008-7

    Article  Google Scholar 

  14. Hoeppe P (2002) Different aspects of assessing indoor and outdoor thermal comfort. Energy Build 34:661–665, doi:10.1016/S0378-7788(02)00017-8

    Article  Google Scholar 

  15. Holand B (1999) Comfort temperatures for sleeping bags. Proceedings of the Third International Meeting on Thermal Manikin Testing, Sweden, pp 25–28

  16. Holmer I (1984) Required clothing insulation (IREQ) as an analytical index of cold stress. ASHRAE Trans 90(1b):1116–1128

    Google Scholar 

  17. Holmer I, Nilsson HO, Havenith G, Parsons KC (1999) Clothing convective heat exchange — proposal for improved prediction in standards and models. Ann Occup Hyg 43:329–337

    PubMed  CAS  Google Scholar 

  18. ISO (2007) ISO 11079 Ergonomics of the thermal environment—Determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  19. Lotens WA, Van De Linde FJG, Havenith G (1995) Effects of condensation in clothing on heat transfer. Ergonomics 38:114–1131, doi:10.1080/00140139508925177

    Google Scholar 

  20. McCullough EA (1994) Determining the insulation value and temperature rating of sleeping bags. In: Proceedings of Meeting of the Outdoor Retailer Coalition of America, Reno, NV, 20 August 20 1994

  21. McCullough EA, Rohles F (1983) Quantifying the thermal protection characteristics of outdoor clothing systems. Hum Factors 25:191–198

    PubMed  CAS  Google Scholar 

  22. Olesen B, Madsen TL (1995) Measurement of the physical parameters of the thermal environment. Ergonomics 38:138–153, doi:10.1080/00140139508925091

    Article  Google Scholar 

  23. Parsons KC, Havenith G, Holmer I, Nilsson H, Malchaire J (1999) The effects of wind and human movement on the heat and vapour transfer properties of clothing. Ann Occup Hyg 43:347–352

    PubMed  CAS  Google Scholar 

  24. Qian X, Fan J (2006) Interactions of the surface heat and moisture transfer from the human body under varying climatic conditions and walking speeds. Appl Ergon 37(6):685–693

    PubMed  Article  Google Scholar 

  25. Rohles FH Jr, Munson DM (1980) Quantifying the thermal protection and comfort characteristics of sleeping bags. In: McElroy DL, Tye RP (eds) Thermal insulation performance, ASTM STP 718, m ASTM, 1980, pp 225–236

  26. Rohles FH, Munson DM (1981) Sleep and the sleep environment temperature. J Environ Psychol 1:207–214, doi:10.1016/S0272-4944(81)80039-4

    Article  Google Scholar 

  27. Seppanen O, McNall PE, Munson DM, Sprague CH (1972) Thermal insulating values for typical indoor clothing ensembles. ASHRAE Trans 78(1):120–130

    Google Scholar 

  28. Vanggaard L (1987) The practical aspects of sleeping systems. In: Holmes GT, Marsh PL, Vanggaard L, Doucet J, Behmann FW (eds) Handbook on clothing: biomedical effects of military clothing and equipment systems. North Atlantic Treaty Organization, Brussels, Belgium, pp 6A-1–6A-5

  29. Zimmerli T, Weder MS (1997) Protection and comfort—a sweating torso for the simultaneous measurement of protective and comfort properties of PPE. In: Stull JO (ed) Performance of protective clothing, vol 6, ASTM, West Conshohocken, PA, pp 271–280

  30. Zuo J (2004) Factors affecting the insulation value of sleeping bag systems, PhD dissertation, Kansas State University

Download references

Author information



Corresponding author

Correspondence to Jianhua Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, J. Prediction of air temperature for thermal comfort of people using sleeping bags: a review. Int J Biometeorol 52, 717–723 (2008).

Download citation


  • Human body
  • Outdoor environment
  • Sleeping bag
  • Thermal comfort