International Journal of Biometeorology

, Volume 52, Issue 7, pp 587–605 | Cite as

European larch phenology in the Alps: can we grasp the role of ecological factors by combining field observations and inverse modelling?

  • M. Migliavacca
  • E. Cremonese
  • R. Colombo
  • L. Busetto
  • M. Galvagno
  • L. Ganis
  • M. Meroni
  • E. Pari
  • M. Rossini
  • C. Siniscalco
  • U. Morra di Cella
Original Paper

Abstract

Vegetation phenology is strongly influenced by climatic factors. Climate changes may cause phenological variations, especially in the Alps which are considered to be extremely vulnerable to global warming. The main goal of our study is to analyze European larch (Larix decidua Mill.) phenology in alpine environments and the role of the ecological factors involved, using an integrated approach based on accurate field observations and modelling techniques. We present 2 years of field-collected larch phenological data, obtained following a specifically designed observation protocol. We observed that both spring and autumn larch phenology is strongly influenced by altitude. We propose an approach for the optimization of a spring warming model (SW) and the growing season index model (GSI) consisting of a model inversion technique, based on simulated look-up tables (LUTs), that provides robust parameter estimates. The optimized models showed excellent agreement between modelled and observed data: the SW model predicts the beginning of the growing season (BGS) with a mean RMSE of 4 days, while GSI gives a prediction of the growing season length (LGS) with a RMSE of 5 days. Moreover, we showed that the original GSI parameters led to consistent errors, while the optimized ones significantly increased model accuracy. Finally, we used GSI to investigate interactions of ecological factors during springtime development and autumn senescence. We found that temperature is the most effective factor during spring recovery while photoperiod plays an important role during autumn senescence: photoperiod shows a contrasting effect with altitude decreasing its influence with increasing altitude.

Keywords

European larch phenology Alpine environment Phenological models Inverse modelling 

References

  1. Badeck FW, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytologist 162:295–309CrossRefGoogle Scholar
  2. Baldocchi DD, Black TA, Curtis PS, Falge E, Fuentes JD, Granier A, Gu L, Knohl A, Pilegaard K, Schmid HP, Valentini R, Wilson K, Wofsy S, Xu L, Yamamoto S (2005) Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data. Int J Biometeorol 49:377−387PubMedCrossRefGoogle Scholar
  3. Baret F, Knyazikhin Y, Weiss M, Pragnère A, Myneni RB (1999). Overview of retrieval techniques for LAI and fAPAR. Proceedings of ALPS99 Workshop, Meribel, FranceGoogle Scholar
  4. Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. Int J Biometeorol 44:53−59PubMedCrossRefGoogle Scholar
  5. Campbell GS, Norman LM (1998) Environmental biophysics. Springer, New York, p 286Google Scholar
  6. Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. J Appl Ecol 20:951–963CrossRefGoogle Scholar
  7. Cayan DR, Kammerdiener SA, Dettinger MD, Caprio JM, Peterson DH (2001) Changes in the onset of spring in the western United States. Bull Am Meteorol Soc 82:399–415CrossRefGoogle Scholar
  8. Chen X, Tan Z, Schwartz MD, Xu C (2004) Determining the growing season of land vegetation on the basis of plant phenology and satellite data in Northern China. Int J Biometeorol 44:97–101CrossRefGoogle Scholar
  9. Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112CrossRefGoogle Scholar
  10. Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Res 19:257–264CrossRefGoogle Scholar
  11. Chuine I (2000) A unified model for budburst of trees. J Theor Biol 207:337–347PubMedCrossRefGoogle Scholar
  12. Chuine I, Cour P (1999) Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phytol 143:339–349CrossRefGoogle Scholar
  13. Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466CrossRefGoogle Scholar
  14. Chuine I, Cour P, Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ 22:1–13CrossRefGoogle Scholar
  15. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Le Roy Ladurie E (2004) Grape ripening as a past climate indicator. Nature 432:289–290PubMedCrossRefGoogle Scholar
  16. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New YorkGoogle Scholar
  17. Fitter AH, Hay RK (2002) Environmental physiology of plants. Academic, LondonGoogle Scholar
  18. Fitzjarrald DR, Acevedo OC, Moore KE (2001) Climatic consequences of leaf presence in the eastern United States. J Climate 14:598–614CrossRefGoogle Scholar
  19. Fu P, Rich PM (1999) Design and implementation of the solar analyst: an arcview extension for modelling solar radiation at landscape scales. Proceedings of the 19th Annual ESRI User Conference, San Diego, USAGoogle Scholar
  20. Hadley JL (2000) Effect of daily minimum temperature on photosynthesis in eastern hemlock (Tsuga canadensis L.) in autumn and winter. Arct Antarct Alpine Res 32:368–374CrossRefGoogle Scholar
  21. Häkkinen R, Linkosalo T, Hari P (1998) Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiol 18:707–712PubMedGoogle Scholar
  22. Hänninen H (1991) Does climate warming increase the risk of frost damage in northern trees? Plant Cell Environ 14:449–454CrossRefGoogle Scholar
  23. Hari P, Häkkinen R (1991) The utilisation of old phenological time series of bud burst to compare models describing annual cycles of plants. Tree Physiol 8:281–287PubMedGoogle Scholar
  24. Heide OM (1993) Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540CrossRefGoogle Scholar
  25. Heide OM (2003) High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiol 23:931–936PubMedGoogle Scholar
  26. Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol 29:597–604CrossRefGoogle Scholar
  27. Janssen PHM, Heuberger PSC (1995) Calibration of process oriented models. Ecol Modell 83:55–66CrossRefGoogle Scholar
  28. Jolly WM, Nemani RR, Running SW (2005) A generalized, bioclimatic index to predict foliar phenology in response to climate. Glob Chang Biol 11:619–632CrossRefGoogle Scholar
  29. Keller F, Körner C (2003) The role of photoperiodism in alpine plant development. Arct Antarct Alpine Res 35:361–368CrossRefGoogle Scholar
  30. Kimes DS, Knyazikhin Y, Privette JL, Abuelgasim AA, Gao F (2000) Inversion of physically-based models. Remote Sens Rev 18:381–439Google Scholar
  31. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75PubMedCrossRefGoogle Scholar
  32. Levitt J (1980) Responses of plants to environmental stresses. Academic, New YorkGoogle Scholar
  33. Lieth H (1974) Phenology and seasonality modelling. Springer, HeidelbergGoogle Scholar
  34. Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14CrossRefGoogle Scholar
  35. Linkosalo T, Häkkinen R, Hänninen H (2006) Models of the spring phenology of boreal and temperate trees: is there something missing? Tree Physiol 26:1165–1172PubMedGoogle Scholar
  36. Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol 7:51–73CrossRefGoogle Scholar
  37. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81PubMedCrossRefGoogle Scholar
  38. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659CrossRefGoogle Scholar
  39. Mercalli L, Castellano L, Cat Berro D, Di Napoli G, Montuschi S, Mortara G, Ratti M, Guindani N (2003) Atlante Climatico della Valle d'Aosta. Ed. SMS, Torino, p 406, ItalyGoogle Scholar
  40. Meroni M, Colombo R, Panigada C (2004) Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens Environ 92(2):195–206CrossRefGoogle Scholar
  41. Monteith JL, Unsworth MH (1990) Principles of environmental physics. Arnold, New YorkGoogle Scholar
  42. Myking T (1997) Effects of constant and fluctuating temperature on time to budburst in Betula pubescens and its relation to bud respiration. Trees 12:107–112Google Scholar
  43. Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Glob Chang Biol 9:1792–1801CrossRefGoogle Scholar
  44. Öquist G (1983) Effect of low temperature on photosynthesis. Plant Cell Environ 6:281–300Google Scholar
  45. Ozenda P (1985) La végétation de la chaine alpine dans l'espace montagnard européen. Masson, FranceGoogle Scholar
  46. Paci M (1997) Ecologia Forestale. Edagricole, ItalyGoogle Scholar
  47. Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18:811–816PubMedGoogle Scholar
  48. Partanen J, Leinonen I, Repo T (2001) Effect of accumulated duration of the light period on bud burst in Norway spruce (Picea abies) of varying ages. Silva Fenn 35:111–117Google Scholar
  49. Peñuelas J, Filella I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846CrossRefGoogle Scholar
  50. Picard G, Quegan S, Delbart N, Lomas MR, Le Toan T, Woodward FI (2005) Bud-burst modelling in Siberia and its impact on quantifying the carbon budget. Glob Chang Biol 11:2164–2176CrossRefGoogle Scholar
  51. Pignatti S (1998) I boschi d'Italia. UTET, TorinoGoogle Scholar
  52. Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Glob Change Biol 8:999–1017CrossRefGoogle Scholar
  53. Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2003) Inverse modelling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranean ecosystems. J Geophys Res-Atmospheres 108 art-4726Google Scholar
  54. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439CrossRefGoogle Scholar
  55. Repo T, Leinonen I, Ryyppo A, Finér L (2004) The effect of soil temperature on the bud phenology, chlorophyll fluorescence, carbohydrate content and cold hardiness of Norway spruce seedlings. Physiol Plant 121:93–100PubMedCrossRefGoogle Scholar
  56. Rich PM, Dubayah R, Hetrick WA, Saving SC (1994) Using viewshed models to calculate intercepted solar radiation: applications in ecology. American Society for Photogrammetry and Remote Sensing Technical Papers, pp 524–529Google Scholar
  57. Richardson AD, Bailey AS, Denny EG, Martin CW, O'Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Change Biol 12:1174–1188CrossRefGoogle Scholar
  58. Rolland C, Petitcolas V, Michalet R (2004) Changes in radial tree growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees Struct Funct 13:40–53Google Scholar
  59. Rosenthal SI, Camm EL (1997) Photosynthetic decline and pigment loss during autumn foliar senescence in western larch (Larix occidentalis). Tree Physiol 17:767–775PubMedGoogle Scholar
  60. Rötzer T, Chmielewski FM (2001) Phenological maps of Europe. Clim Res 18:249–257CrossRefGoogle Scholar
  61. Rötzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in central Europe-differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44:60–66CrossRefGoogle Scholar
  62. Schaber J, Badeck FW (2002) Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiol 22:973–982PubMedGoogle Scholar
  63. Schaber J, Badeck FW (2003) Physiology-based phenology models for forest tree species in Germany. Int J Biometeorol 47:193–201PubMedCrossRefGoogle Scholar
  64. Schwartz MD, Reiter BE (2000) Changes in North American spring. Int J Climatol 20:929–932CrossRefGoogle Scholar
  65. Spano D, Cesaraccio C, Duce P, Snyder RL (1999) Phenological stages of natural species and their use as climate indicators. Int J Biometeorol 42:124–133CrossRefGoogle Scholar
  66. Strasburger E (1995) Trattato di Botanica-parte generale. XXXIII Edizione. Delfino, RomeyGoogle Scholar
  67. Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in alpine spring phenology: a multivariate analysis approach. Clim Change 73:395–414CrossRefGoogle Scholar
  68. Suni T, Berninger F, Vesala T, Markkanen T, Hari P, Makela A, Ilvesniemi H, Hanninen H, Nikinmaa E, Huttula T, Laurila T, Aurela M, Grelle A, Lindroth A, Arneth A, Shibistova O, Lloyd J (2003) Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Glob Chang Biol 9:1410–1426CrossRefGoogle Scholar
  69. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, PhiladelphiaGoogle Scholar
  70. Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251CrossRefGoogle Scholar
  71. Van Wijk MT, Williams M, Laundre JA, Shaver GR (2003) Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw. Glob Change Biol 9:743–758CrossRefGoogle Scholar
  72. Weiss M, Baret F, Myneni RB, Pragnere A, Knyazikhin Y (2000) Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 20:3−22CrossRefGoogle Scholar
  73. White MA, Brunsell NA, Schwartz MD (2003) Vegetation phenology in global change studies. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer, Dordrecht, pp 453−466Google Scholar
  74. Worrall J (1993) Temperature effects on bud burst and leaf fall in subalpine larch. J Sustainable For 1:1−18Google Scholar
  75. Worrall J (1999) Phenology and the changing seasons. Nature 399:101CrossRefGoogle Scholar
  76. Wu Z, Skjelvag AO, Baadshaug OH (2004) Quantification of photoperiodic effects on growth of phleum pratense. Ann Bot 94:535−543PubMedCrossRefGoogle Scholar

Copyright information

© ISB 2008

Authors and Affiliations

  • M. Migliavacca
    • 1
  • E. Cremonese
    • 2
  • R. Colombo
    • 1
  • L. Busetto
    • 1
    • 4
  • M. Galvagno
    • 1
    • 2
  • L. Ganis
    • 2
  • M. Meroni
    • 1
  • E. Pari
    • 3
  • M. Rossini
    • 1
  • C. Siniscalco
    • 3
  • U. Morra di Cella
    • 2
  1. 1.Remote Sensing of Environmental Dynamics Laboratory, Dip. Scienze dell’Ambiente e del TerritorioUniversità Milano-BicoccaMilanoItaly
  2. 2.Agenzia Regionale per la Protezione dell’Ambiente della Valle d’AostaAostaItaly
  3. 3.Dep. Biologia VegetaleUniversità degli Studi di TorinoTorinoItaly
  4. 4.CNR-IIA Institute on Atmospheric PollutionRomaItaly

Personalised recommendations