Abstract
The most important meteorological parameter affecting the human energy balance during sunny weather conditions is the mean radiant temperature Tmrt. It considers the uniform temperature of a surrounding surface giving off blackbody radiation, which results in the same energy gain of a human body given the prevailing radiation fluxes. This energy gain usually varies considerably in open space conditions. In this paper, the model ‘RayMan’, used for the calculation of short- and long-wave radiation fluxes on the human body, is presented. The model, which takes complex urban structures into account, is suitable for several applications in urban areas such as urban planning and street design. The final output of the model is, however, the calculated Tmrt, which is required in the human energy balance model, and thus also for the assessment of the urban bioclimate, with the use of thermal indices such as predicted mean vote (PMV), physiologically equivalent temperature (PET) and standard effective temperature (SET*). The model has been developed based on the German VDI-Guidelines 3789, Part II (environmental meteorology, interactions between atmosphere and surfaces; calculation of short- and long-wave radiation) and VDI-3787 (environmental meteorology, methods for the human-biometeorological evaluation of climate and air quality for urban and regional planning. Part I: climate). The validation of the results of the RayMan model agrees with similar results obtained from experimental studies.
Similar content being viewed by others
References
Badescu V (1997) Verification of some very simple clear and cloudy sky model to evaluate global solar irradiance. Sol Energy 61:251–264
Becker P, Erhardt DW, Smith AP (1989) Analysis of forest light environments Part I. Computerized estimation of solar radiation from hemispherical canopy photographs. Agric Forest Meteorol 44:217–232
Bradkte F (1951) Katathermometrische Feststellung der mittleren Strahlungstemperatur der Umgebung. GI 72:3–7
Brühl Ch, Zdunkowski W (1983) An approximate calculation method for parallel and diffuse solar irradiances on inclined surfaces in the presence of obstructing mountain or buildings. Arch Met Geoph Biocl, Ser B 32:111–129
Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ Model Softw 13:373–384
Ceballos JC, De A Moura GB (1997) Solar irradiation assessment using meteosat 4-Vis imagery. Sol Energy 60:209–219
Chapman L, Thornes JE, Bradley AV (2001) Rapid determination of canyon geometry parameters for use in surface radiation budgets. Theor Appl Climatol 69:81–89
Chen JM, Black TA (1991) Measuring leaf area index of plant canopies with branch architecture. Agric Forest Meteorol 57:1–12
Clark RP, Edholm OG (1985) Man and his thermal environment. E. Arnold, London
Craggs C, Conway EM, Pearsall NM (2000) Statistical investigation of the optimal averaging time for solar irradiance on horizontal and vertical surfaces in the UK. Sol Energy 68:79–187
Czeplak G, Kasten F (1987) Parametrisierung der atmosphärischen Wärmestrahlung bei bewölktem Himmel. Meteorol Rndsch 40:184–187
Diag GR, Bland WL, Mecikalski JR, Anderson MC (2000) Satellite-based estimates of longwave radiation for agricultural applications. Agric Forest Meteorol 103:349–355
Fanger PO (1972) Thermal comfort. McGraw-Hill, New York
Frank SF, Gerding RB, O’Rourke PA, Terhung WH (1981) An urban radiation obstruction model. Boundary-Layer Meteorology 20:259–264
Frazer GW, Fournier RA, Trofymow JA, Hall RJ (2001) A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric Forest Meteorol 109:249–263
Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731
Gopinathan KK (1992) Estimation of hourly global radiation and diffuse solar radiation from hourly sunshine duration. Solar Energy 48:3–5
Gueymard C (2000) Prediction and performance assessment of mean hourly global radiation. Sol Energy 68:285–303
Gul MS, Muneer T, Kambezidis HD (1998) Models for obtaining solar radiation from other meteorological data. Sol Energy 64:99–108
Höppe P (1984) Die Energiebilanz des Menschen. Wiss Mitt Meteorol Inst Univ München No. 49
Höppe P (1992) Ein neues Verfahren zur Bestimmung der mittleren Strahlungstemperatur im Freien. Wetter und Leben 44:147–151
Höppe P (1993) Heat balance modelling. Experientia 49:741–746
Höppe P (1999) The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75
Holmer B (1992) A simple operative method for determination of sky view factors in complex urban canyon from fisheye photographs. Meteorol Zeitschrift, NF 1:236–239
Holmer B, Postgärd U, Eriksson M (2001) Sky view factors in forest canopies calculated with IDRISI. Theor Appl Climatol 68:33–40
ISO (1982) ISO 7243: Hot environments – Estimation of the heat stress working man, based on the WBGT-Index (Wet Bulb Globe Temperature). International Organisation of Standardization, Geneve
ISO (1983) ISO 7730: Moderate thermal environments – Determination of the PMV and PPD indices and specification of the conditions of thermal comfort. International Organisation of Standardization, Geneve
Jendritzky G, Nübler W (1981) A model analysing the urban thermal environment in physiologically significant terms. Arch Met Geoph Biokl, Ser B29:313–326
Jendritzky G, Menz H, Schirmer H, Schmidt-Kessen W (1990) Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Beitr. Akad. Raumforsch. Landesplan. No. 114
Jessel W (1983) Die diffuse Himmelstrahlung. Eine vergleichende Darstellung der Bestrahlungsstärke bezogen auf eine kugelförmige und eine ebene horizontale Empfangsfläche. Arch Met Geoph Biokl, Ser B32:23–52
Johnson ID, Watson ID (1984) The determination of view-factors in urban canyons. J Clim Appl Meteorol 23:329–335
Kaempfert W (1949) Zur Frage der Besonnung enger Strassen. Meteorol Rdsch 2:222–227
Kaempfert W (1951) Ein Phasendiagramm der Besonnung. Meteorol Rdsch 4:141–144
Kanda M, Kawai T, Nagakawa K (2004) A simple theoretical radiation scheme for regular building arrays. Boundary Layer Meteorology 114:71–90
Kasten F (1980) A simple parametrization of the pyrheliometric formula for determining the Linke turbidity factor. Meteorol Rdsch 33:124–127
Kemmoku Y, Orita S, Nakagawa S, Sakakibara T (1999) Daily insolation forecasting using a multi-stage neural network. Solar Energy 66:193–199
Kerslake Mc K (1972) The stress of hot environments. Cambridge University Press, Cambridge
Littlefair P (2001) Daylight, sunlight and solar gain in the urban environment. Sol Energy 70:177–185
Marki A, Antonić O (1999) Annual models of monthly mean hourly direct, diffuse, and global radiation at ground. Meteorol Zeitschrift, NF 8:91–95
Matzarakis A (2001) Die thermische Komponente des Stadtklimas. Ber. Meteorol. Inst. Univ. Freiburg Nr. 6
Matzarakis A, Mayer H (1996) Another Kind of Environmental Stress: Thermal Stress. NEWSLETTERS No. 18, 7–10. WHO Colloborating Centre for Air Quality Management and Air Pollution Control
Matzarakis A., Rutz, F., Mayer, H., 2000: Estimation and calculation of the mean radiant temperature within urban structures. In: RJ de Dear, JD Kalma, TR Oke and A Auliciems (eds) Biometeorology and Urban Climatology at the Turn of the Millenium : Selected Papers from the Conference ICB-ICUC’99, Sydney, WCASP-50, WMO/TD No. 1026, 273–278
Mayer H (1993) Urban bioclimatology. Experientia 49:957–963
Meek DW (1997) Estimation of maximum possible daily global radiation. Agric Forest Meteorol 87:223–241
Mohsen MA (1979) Solar radiation and courtyard house forms – I. A mathematical model. Build Environ 14:89–106
Mora-Lopez LL, Sidrach-de-Cardona M (1998) Multicaptive arma models to generate hourly series of global irradiation. Sol Energy 63:283–291
Niewienda A, Heidt FD (1996) Sombrero: A pc-tool to calculate shadows on arbitrarily oriented surfaces. Sol Energy 58:253–363
Nunez M, Eliasson I, Lindgren J (2000) Spatial variation of incoming longwave radiation in Göteborg, Sweden. Theor Appl Climatol 67:181–192
Olseth JA, Skartveit A (1993) Characteristics of hourly global irradiance modelled from cloud data. Sol Energy 51:197–204
Pereira FOR, Silva CAN, Turkienikz B (2001) A methodology for sunlight urban planning: A computer-based solar and sky vault obstruction analysis. Sol Energy 70:217–226
Power H (2001) Estimating atmospheric turbidity from climate data. Atmos Environ 35:125–134
Revfeim KJA (1997) On the relationship between radiation and mean daily sunshine. Agric Forest Meteorol 86:183–191
Rich PM, Clark DB, Clark DA, Oberbauer SF (1993) Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agric Forest Meteorol 65:107–127
Roderick ML (1999) Estimating the diffuse component from daily and monthly measurements of global radiation. Agric Forest Meteorol 95:169–185
Röckle R, Richter CJ, Höfl HC, Steinicke W, Streifeneder M, Matzarakis A (2003) Klimaanalyse Stadt Freiburg. Auftraggeber Stadtplanungsamt der Stadt Freiburg. November 2003
Salsibury JW, D’Aria DM (1992) Emissivity of terrestrial material in the 8–14 μm atmospheric window. Remote Sens Environ 42:83–106
Santamouris M, Mihalakakou G, Psiloglou B, Eftaxias G, Asimakopoulos DN (1999) Modeling the global irradiation on the earth’s surface using atmospheric deterministic and intelligent data-driven techniques. J Climate 12:3105–3116
Sen Z (1998) Fuzzy algorithm for estimation of solar radiation from sunshine duration. Sol Energy 63:39–49
Steadman RG (1971) Indices of windchill of clothed persons. J Appl Meteorology 10:674–683
Terjung WH, Louie S (1974) A climatic model of urban energy budgets. Geogr Anal 6:341–367
Thom EC (1959) The Discomfort Index. Weatherwise 12:57–60
Underwood CR, Ward EJ (1966) The solar radiation area on man. Ergonomics 9:155–168
Valko P (1966) Die Himmelsstrahlung in ihrer Beziehung zu verschiedenen Parametern. Arch Met Geoph Biocl B14:337–359
VDI (1994) VDI 3789, Part 2: Environmental Meteorology, Interactions between Atmosphere and Surfaces; Calculation of the short- and long-wave radiation. Beuth, Berlin, p 52
VDI (1998) VDI 3787, Part I: Environmental Meteorology, Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning at regional level. Part I: Climate. Beuth, Berlin, p 29
VDI (2001) VDI 3789, Part 3: Environmental Meteorology, Interactions between Atmosphere and Surfaces; Calculation of spectral irradiances in the solar wavelength range. Beuth, Berlin, p 77
Wachter H (1950) Strahlungsmessung für bioklimatische Zwecke. Meteorol Rdsch 3:65–68
Watson ID, Johnson GT (1987) Graphical estimation of sky view-factors in urban environments. J Climatology 7:193–197
Watson ID, Johnson GT (1988) Estimating person view factors from fish-eye lens photographs. Int J Biometeorol 32:123–128
Winslow CEA, Herrington LP, Gagge AP (1936) A new method of particional calorimetry. Amer J Physiology 116:641–655
Zdunkowski W, Brühl Ch (1983) A fast approximate method for the calculation of the infrared radiation balance within city street cavities. Arch Met Geoph Biocl, Ser B 33:237–241
Acknowledgements
Thanks to Nikola Sander for proofreading and editing the manuscript. Cordial thanks to the RayMan users for their suggestions and validations for the further development of the model.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Matzarakis, A., Rutz, F. & Mayer, H. Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51, 323–334 (2007). https://doi.org/10.1007/s00484-006-0061-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00484-006-0061-8