Skip to main content

Modelling radiation fluxes in simple and complex environments—application of the RayMan model

Abstract

The most important meteorological parameter affecting the human energy balance during sunny weather conditions is the mean radiant temperature Tmrt. It considers the uniform temperature of a surrounding surface giving off blackbody radiation, which results in the same energy gain of a human body given the prevailing radiation fluxes. This energy gain usually varies considerably in open space conditions. In this paper, the model ‘RayMan’, used for the calculation of short- and long-wave radiation fluxes on the human body, is presented. The model, which takes complex urban structures into account, is suitable for several applications in urban areas such as urban planning and street design. The final output of the model is, however, the calculated Tmrt, which is required in the human energy balance model, and thus also for the assessment of the urban bioclimate, with the use of thermal indices such as predicted mean vote (PMV), physiologically equivalent temperature (PET) and standard effective temperature (SET*). The model has been developed based on the German VDI-Guidelines 3789, Part II (environmental meteorology, interactions between atmosphere and surfaces; calculation of short- and long-wave radiation) and VDI-3787 (environmental meteorology, methods for the human-biometeorological evaluation of climate and air quality for urban and regional planning. Part I: climate). The validation of the results of the RayMan model agrees with similar results obtained from experimental studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Badescu V (1997) Verification of some very simple clear and cloudy sky model to evaluate global solar irradiance. Sol Energy 61:251–264

    Article  Google Scholar 

  2. Becker P, Erhardt DW, Smith AP (1989) Analysis of forest light environments Part I. Computerized estimation of solar radiation from hemispherical canopy photographs. Agric Forest Meteorol 44:217–232

    Article  Google Scholar 

  3. Bradkte F (1951) Katathermometrische Feststellung der mittleren Strahlungstemperatur der Umgebung. GI 72:3–7

    Google Scholar 

  4. Brühl Ch, Zdunkowski W (1983) An approximate calculation method for parallel and diffuse solar irradiances on inclined surfaces in the presence of obstructing mountain or buildings. Arch Met Geoph Biocl, Ser B 32:111–129

    Article  Google Scholar 

  5. Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ Model Softw 13:373–384

    Article  Google Scholar 

  6. Ceballos JC, De A Moura GB (1997) Solar irradiation assessment using meteosat 4-Vis imagery. Sol Energy 60:209–219

    Article  Google Scholar 

  7. Chapman L, Thornes JE, Bradley AV (2001) Rapid determination of canyon geometry parameters for use in surface radiation budgets. Theor Appl Climatol 69:81–89

    Article  Google Scholar 

  8. Chen JM, Black TA (1991) Measuring leaf area index of plant canopies with branch architecture. Agric Forest Meteorol 57:1–12

    Article  Google Scholar 

  9. Clark RP, Edholm OG (1985) Man and his thermal environment. E. Arnold, London

    Google Scholar 

  10. Craggs C, Conway EM, Pearsall NM (2000) Statistical investigation of the optimal averaging time for solar irradiance on horizontal and vertical surfaces in the UK. Sol Energy 68:79–187

    Google Scholar 

  11. Czeplak G, Kasten F (1987) Parametrisierung der atmosphärischen Wärmestrahlung bei bewölktem Himmel. Meteorol Rndsch 40:184–187

    Google Scholar 

  12. Diag GR, Bland WL, Mecikalski JR, Anderson MC (2000) Satellite-based estimates of longwave radiation for agricultural applications. Agric Forest Meteorol 103:349–355

    Article  Google Scholar 

  13. Fanger PO (1972) Thermal comfort. McGraw-Hill, New York

    Google Scholar 

  14. Frank SF, Gerding RB, O’Rourke PA, Terhung WH (1981) An urban radiation obstruction model. Boundary-Layer Meteorology 20:259–264

    Article  Google Scholar 

  15. Frazer GW, Fournier RA, Trofymow JA, Hall RJ (2001) A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric Forest Meteorol 109:249–263

    Article  Google Scholar 

  16. Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731

    Google Scholar 

  17. Gopinathan KK (1992) Estimation of hourly global radiation and diffuse solar radiation from hourly sunshine duration. Solar Energy 48:3–5

    Article  Google Scholar 

  18. Gueymard C (2000) Prediction and performance assessment of mean hourly global radiation. Sol Energy 68:285–303

    Article  Google Scholar 

  19. Gul MS, Muneer T, Kambezidis HD (1998) Models for obtaining solar radiation from other meteorological data. Sol Energy 64:99–108

    Article  Google Scholar 

  20. Höppe P (1984) Die Energiebilanz des Menschen. Wiss Mitt Meteorol Inst Univ München No. 49

  21. Höppe P (1992) Ein neues Verfahren zur Bestimmung der mittleren Strahlungstemperatur im Freien. Wetter und Leben 44:147–151

    Google Scholar 

  22. Höppe P (1993) Heat balance modelling. Experientia 49:741–746

    PubMed  Article  Google Scholar 

  23. Höppe P (1999) The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    PubMed  Article  Google Scholar 

  24. Holmer B (1992) A simple operative method for determination of sky view factors in complex urban canyon from fisheye photographs. Meteorol Zeitschrift, NF 1:236–239

    Google Scholar 

  25. Holmer B, Postgärd U, Eriksson M (2001) Sky view factors in forest canopies calculated with IDRISI. Theor Appl Climatol 68:33–40

    Article  Google Scholar 

  26. ISO (1982) ISO 7243: Hot environments – Estimation of the heat stress working man, based on the WBGT-Index (Wet Bulb Globe Temperature). International Organisation of Standardization, Geneve

    Google Scholar 

  27. ISO (1983) ISO 7730: Moderate thermal environments – Determination of the PMV and PPD indices and specification of the conditions of thermal comfort. International Organisation of Standardization, Geneve

    Google Scholar 

  28. Jendritzky G, Nübler W (1981) A model analysing the urban thermal environment in physiologically significant terms. Arch Met Geoph Biokl, Ser B29:313–326

    Article  Google Scholar 

  29. Jendritzky G, Menz H, Schirmer H, Schmidt-Kessen W (1990) Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Beitr. Akad. Raumforsch. Landesplan. No. 114

  30. Jessel W (1983) Die diffuse Himmelstrahlung. Eine vergleichende Darstellung der Bestrahlungsstärke bezogen auf eine kugelförmige und eine ebene horizontale Empfangsfläche. Arch Met Geoph Biokl, Ser B32:23–52

    Article  Google Scholar 

  31. Johnson ID, Watson ID (1984) The determination of view-factors in urban canyons. J Clim Appl Meteorol 23:329–335

    Article  Google Scholar 

  32. Kaempfert W (1949) Zur Frage der Besonnung enger Strassen. Meteorol Rdsch 2:222–227

    Google Scholar 

  33. Kaempfert W (1951) Ein Phasendiagramm der Besonnung. Meteorol Rdsch 4:141–144

    Google Scholar 

  34. Kanda M, Kawai T, Nagakawa K (2004) A simple theoretical radiation scheme for regular building arrays. Boundary Layer Meteorology 114:71–90

    Article  Google Scholar 

  35. Kasten F (1980) A simple parametrization of the pyrheliometric formula for determining the Linke turbidity factor. Meteorol Rdsch 33:124–127

    Google Scholar 

  36. Kemmoku Y, Orita S, Nakagawa S, Sakakibara T (1999) Daily insolation forecasting using a multi-stage neural network. Solar Energy 66:193–199

    Article  Google Scholar 

  37. Kerslake Mc K (1972) The stress of hot environments. Cambridge University Press, Cambridge

    Google Scholar 

  38. Littlefair P (2001) Daylight, sunlight and solar gain in the urban environment. Sol Energy 70:177–185

    Article  Google Scholar 

  39. Marki A, Antonić O (1999) Annual models of monthly mean hourly direct, diffuse, and global radiation at ground. Meteorol Zeitschrift, NF 8:91–95

    Google Scholar 

  40. Matzarakis A (2001) Die thermische Komponente des Stadtklimas. Ber. Meteorol. Inst. Univ. Freiburg Nr. 6

  41. Matzarakis A, Mayer H (1996) Another Kind of Environmental Stress: Thermal Stress. NEWSLETTERS No. 18, 7–10. WHO Colloborating Centre for Air Quality Management and Air Pollution Control

  42. Matzarakis A., Rutz, F., Mayer, H., 2000: Estimation and calculation of the mean radiant temperature within urban structures. In: RJ de Dear, JD Kalma, TR Oke and A Auliciems (eds) Biometeorology and Urban Climatology at the Turn of the Millenium : Selected Papers from the Conference ICB-ICUC’99, Sydney, WCASP-50, WMO/TD No. 1026, 273–278

  43. Mayer H (1993) Urban bioclimatology. Experientia 49:957–963

    PubMed  Article  CAS  Google Scholar 

  44. Meek DW (1997) Estimation of maximum possible daily global radiation. Agric Forest Meteorol 87:223–241

    Article  Google Scholar 

  45. Mohsen MA (1979) Solar radiation and courtyard house forms – I. A mathematical model. Build Environ 14:89–106

    Article  Google Scholar 

  46. Mora-Lopez LL, Sidrach-de-Cardona M (1998) Multicaptive arma models to generate hourly series of global irradiation. Sol Energy 63:283–291

    Article  Google Scholar 

  47. Niewienda A, Heidt FD (1996) Sombrero: A pc-tool to calculate shadows on arbitrarily oriented surfaces. Sol Energy 58:253–363

    Article  Google Scholar 

  48. Nunez M, Eliasson I, Lindgren J (2000) Spatial variation of incoming longwave radiation in Göteborg, Sweden. Theor Appl Climatol 67:181–192

    Article  Google Scholar 

  49. Olseth JA, Skartveit A (1993) Characteristics of hourly global irradiance modelled from cloud data. Sol Energy 51:197–204

    Article  Google Scholar 

  50. Pereira FOR, Silva CAN, Turkienikz B (2001) A methodology for sunlight urban planning: A computer-based solar and sky vault obstruction analysis. Sol Energy 70:217–226

    Article  Google Scholar 

  51. Power H (2001) Estimating atmospheric turbidity from climate data. Atmos Environ 35:125–134

    Article  CAS  Google Scholar 

  52. Revfeim KJA (1997) On the relationship between radiation and mean daily sunshine. Agric Forest Meteorol 86:183–191

    Article  Google Scholar 

  53. Rich PM, Clark DB, Clark DA, Oberbauer SF (1993) Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agric Forest Meteorol 65:107–127

    Article  Google Scholar 

  54. Roderick ML (1999) Estimating the diffuse component from daily and monthly measurements of global radiation. Agric Forest Meteorol 95:169–185

    Article  Google Scholar 

  55. Röckle R, Richter CJ, Höfl HC, Steinicke W, Streifeneder M, Matzarakis A (2003) Klimaanalyse Stadt Freiburg. Auftraggeber Stadtplanungsamt der Stadt Freiburg. November 2003

  56. Salsibury JW, D’Aria DM (1992) Emissivity of terrestrial material in the 8–14 μm atmospheric window. Remote Sens Environ 42:83–106

    Article  Google Scholar 

  57. Santamouris M, Mihalakakou G, Psiloglou B, Eftaxias G, Asimakopoulos DN (1999) Modeling the global irradiation on the earth’s surface using atmospheric deterministic and intelligent data-driven techniques. J Climate 12:3105–3116

    Article  Google Scholar 

  58. Sen Z (1998) Fuzzy algorithm for estimation of solar radiation from sunshine duration. Sol Energy 63:39–49

    Article  Google Scholar 

  59. Steadman RG (1971) Indices of windchill of clothed persons. J Appl Meteorology 10:674–683

    Article  Google Scholar 

  60. Terjung WH, Louie S (1974) A climatic model of urban energy budgets. Geogr Anal 6:341–367

    Article  Google Scholar 

  61. Thom EC (1959) The Discomfort Index. Weatherwise 12:57–60

    Google Scholar 

  62. Underwood CR, Ward EJ (1966) The solar radiation area on man. Ergonomics 9:155–168

    PubMed  CAS  Google Scholar 

  63. Valko P (1966) Die Himmelsstrahlung in ihrer Beziehung zu verschiedenen Parametern. Arch Met Geoph Biocl B14:337–359

    Google Scholar 

  64. VDI (1994) VDI 3789, Part 2: Environmental Meteorology, Interactions between Atmosphere and Surfaces; Calculation of the short- and long-wave radiation. Beuth, Berlin, p 52

    Google Scholar 

  65. VDI (1998) VDI 3787, Part I: Environmental Meteorology, Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning at regional level. Part I: Climate. Beuth, Berlin, p 29

    Google Scholar 

  66. VDI (2001) VDI 3789, Part 3: Environmental Meteorology, Interactions between Atmosphere and Surfaces; Calculation of spectral irradiances in the solar wavelength range. Beuth, Berlin, p 77

    Google Scholar 

  67. Wachter H (1950) Strahlungsmessung für bioklimatische Zwecke. Meteorol Rdsch 3:65–68

    Google Scholar 

  68. Watson ID, Johnson GT (1987) Graphical estimation of sky view-factors in urban environments. J Climatology 7:193–197

    Article  Google Scholar 

  69. Watson ID, Johnson GT (1988) Estimating person view factors from fish-eye lens photographs. Int J Biometeorol 32:123–128

    Article  Google Scholar 

  70. Winslow CEA, Herrington LP, Gagge AP (1936) A new method of particional calorimetry. Amer J Physiology 116:641–655

    CAS  Google Scholar 

  71. Zdunkowski W, Brühl Ch (1983) A fast approximate method for the calculation of the infrared radiation balance within city street cavities. Arch Met Geoph Biocl, Ser B 33:237–241

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Nikola Sander for proofreading and editing the manuscript. Cordial thanks to the RayMan users for their suggestions and validations for the further development of the model.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Matzarakis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matzarakis, A., Rutz, F. & Mayer, H. Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51, 323–334 (2007). https://doi.org/10.1007/s00484-006-0061-8

Download citation

Keywords

  • RayMan
  • Mean radiant temperature
  • Urban climate
  • Urban planning
  • Physiologically equivalent temperature PET