International Journal of Biometeorology

, Volume 49, Issue 3, pp 184–188 | Cite as

Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change

  • C. Galán
  • H. García-Mozo
  • L. Vázquez
  • L. Ruiz
  • C. Díaz de la Guardia
  • M. M. Trigo
Original Article

Abstract

Olives are one of the largest crops in the Mediterranean region, especially in Andalusia, in southern Spain. A thermal model has been developed for forecasting the start of the olive tree pollen season at five localities in Andalusia: Cordoba, Priego, Jaen, Granada and Malaga using airborne pollen and meteorological data from 1982 to 2001. Threshold temperatures varied between 5°C and 12.5°C depending on bio-geographical characteristics. The external validity of the results was tested using the data for the year 2002 as an independent variable and it confirmed the model’s accuracy with only a few days difference from predicted values. All the localities had increasingly earlier start dates during the study period. This could confirm that olive flower phenology can be considered as a sensitive indicator of the effects of climate fluctuations in the Mediterranean area. The theoretical impact of the predicted climatic warming on the olive’s flowering phenology at the end of the century is also proposed by applying Regional Climate Model data. A general advance, from 1 to 3 weeks could be expected, although this advance will be more pronounced in mid-altitude inland areas.

Keywords

Olea europaea Pollen Aerobiology Threshold temperature Climate change 

References

  1. Ahmad QK (2001) Climate change 2001: impacts, adaptation, and vulnerability. In: IPCC Working Group II (ed) Summary for policymakers. IPCCGoogle Scholar
  2. Alba F, de la Guardia CD (1998) The effect of air temperature on the starting dates of the Ulmus, Platanus and Olea pollen season in the SE Iberian Peninsula. Aerobiologia 14:191–194Google Scholar
  3. Aron R (1983) Availability of chilling temperatures in California. Agric Meteorol 28:351–363CrossRefGoogle Scholar
  4. Chuine I, Cour P (1999) Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phytol 143:339–349CrossRefGoogle Scholar
  5. Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466CrossRefGoogle Scholar
  6. Chuine I, Cour P, Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ 22:1–13CrossRefGoogle Scholar
  7. Dominguez-Vilches E, Galan C, Guerra F, Villamandos F, Infante F, Mediavilla A (1993) Spring pollen and related allergies in southern Spain. J Investig Allergol Clin Immunol 5:271–275Google Scholar
  8. Domínguez-Vilches E, Galán C, Villamandos F, Infante F (1992) Handling and evaluation of the data from the aerobiological sampling. Monogr REA/EAN 1:1–13Google Scholar
  9. D’Odorico P, Yoo JC, Jaeger S (2002) Changing seasons: a effect of the north atlantic osciallation? Am Meteorol Soc 15:435–445Google Scholar
  10. Fornaciari M, Pieroni L, Ciuchi P, Romano B (1998) A regression model for the start of the pollen season in Olea europaea L. Grana 37:110–113Google Scholar
  11. Fornaciari M, Pieroni L, Orlandi F, Romano B (2002) A new approach to consider the pollen variable in forecasting yield models. Econ Bot 56:66–72Google Scholar
  12. Galán C, García-Mozo H, Cariñanos P, Alcázar P, Domínguez E (2001) The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. Int J Biometeorol 45:8–12CrossRefPubMedGoogle Scholar
  13. Galán C, Vázquez L, García-Mozo H, Domínguez E (2004) Forecasting olive (Olea europaea) crop yield based on pollen emission. Field Crops Res 86:43–51CrossRefGoogle Scholar
  14. García-Mozo H, Galán C, Aira MJ, Belmonte J, De La Guardia CD, Fernández D, Gutierrez AM, Rodriguez FJ, Trigo MM, Dominguez-Vilches E (2002) Modelling start of oak pollen season in different climatic zones in Spain. Agric For Meteorol 110:247–257CrossRefGoogle Scholar
  15. González-Minero FJ, Candau P (1996) Prediction of the beginning of the olive full pollen season in south-west Spain. Aerobiologia 12:91–96Google Scholar
  16. Hirst JM (1952) An automatic volumetric spore-trap. Ann Appl Biol 36:257–265Google Scholar
  17. Jones PD (2001) The Hadley Centre regional climate modelling system. PRECIS. Providing regional climates for impact studies. Meteorological Office, Hadley Centre, BerkshireGoogle Scholar
  18. Jones PD, New M, Parker DE, Martin S, Rigo IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–1999CrossRefGoogle Scholar
  19. Menzel A (2002) Phenology: its importance to the global change community. Climate Change 54:379–385CrossRefGoogle Scholar
  20. Moriondo M, Orlandini S, De Nuntiis P, Mandrioli P (2001) Effect of agrometeorological parameters on the phenology of pollen emission and production of olive trees (Olea europea L). Aerobiologia 7:225–232CrossRefGoogle Scholar
  21. Orlandi F, Fornaciari M, Romano B (2002) The use of phenological data to calculate chilling units in Olea europaea L. in relation to the onset of reproduction. Int J Biometeorol 46:2–8CrossRefPubMedGoogle Scholar
  22. Osborne CP, Chuine I, Viner D, Woodward FI (2000) Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23:701–710CrossRefGoogle Scholar
  23. Recio M, Cabezudo B, Trigo MM, Toro FJ (1996) Olea europaea pollen in the atmosphere of Málaga (S-Spain) and its relationship with meteorological parameters. Grana 35:308–313Google Scholar
  24. Snyder RL (1985) Hand calculating degree-days. Agric For Meteorol 35:353–358CrossRefGoogle Scholar
  25. Snyder RL, Spano D, Cesaraccio C, Duce P (1999) Determining degree-day thresholds from field observations. Int J Biometeorol 42:177–182CrossRefGoogle Scholar
  26. Spano D, Cesaraccio C, Duce P, Snyder RL (1999) Phenological stages of natural species and their use as climate indicators. Int J Biometeorol 42:124–133CrossRefGoogle Scholar
  27. Wielgolasky FE (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 42:158–168CrossRefGoogle Scholar

Copyright information

© ISB 2004

Authors and Affiliations

  • C. Galán
    • 1
  • H. García-Mozo
    • 1
  • L. Vázquez
    • 1
  • L. Ruiz
    • 2
  • C. Díaz de la Guardia
    • 3
  • M. M. Trigo
    • 4
  1. 1.Departamento de Biología VegetalUniversidad de CórdobaCórdobaSpain
  2. 2.Departamento de Biología VegetalUniversidad de JaénJaénSpain
  3. 3.Departamento de Biología VegetalUniversidad de GranadaGranadaSpain
  4. 4.Departamento de Biología VegetalUniversidad de MálagaMálagaSpain

Personalised recommendations