Skip to main content
Log in

Wissensgenerierung aus komplexen Datensätzen in der humanexperimentellen Schmerzforschung

Generating knowledge from complex data sets in human experimental pain research

  • Übersichten
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Schmerz hat eine komplexe Pathophysiologie, die sich in komplexen und heterogenen klinischen Phänotypen ausdrückt. Dies macht die Erforschung von Schmerz und seiner Behandlung zu einem potenziell datenintensiven Thema, bei dessen Bearbeitung große Mengen komplexer Daten aufgenommen werden. Typische Quellen solcher Daten sind Untersuchungen mit funktioneller Magnetresonanztomographie, komplexen quantitativ-sensorischen Tests, DNA-Sequenzierung, insbesondere dem sog. „next generation sequencing“, oder funktionell-genomischen Forschungsansätzen wie zum Beispiel solchen, die auf die Entdeckung oder Repositionierung von bekannten Arzneimitteln als neue Analgetika gerichtet sind. Die Extraktion von Informationen aus solchen Big Data erfordert datenwissenschaftliche Methoden, die der Informatik mehr als der Statistik zuzuordnen sind. Derzeit richtet sich ein besonderes Interesse auf das maschinelle Lernen, welches Methoden zur Detektion interessanter, insbesondere biologisch aussagekräftiger Strukturen in hochdimensionalen Daten bereitstellt, um sog. Klassifikatoren zu erstellen, die klinische Phänotypen z. B. aus klinischen oder genetischen Merkmalen vorhersagen. Darüber hinaus können diese Methoden zur Wissensentdeckung in großen aus biomedizinischen Datenbanken ausgelesenen Datensätzen verwendet werden, um Hypothesen zu generieren und das derzeitige Wissen über Schmerz zur Entwicklung neuer Analgetika zu nutzen. Dies ermöglicht, in der Schmerzforschung sogenannte DIKW-Ansätze (Daten – Information – Wissen [„knowledge“] – Weisheit) zu verfolgen. In diesem Artikel wird anhand aktueller Beispiele aus der Schmerzforschung ein Überblick über die aktuellen datenwissenschaftlichen Methoden in diesem Forschungsbereich vermittelt.

Abstract

Pain has a complex pathophysiology that is expressed in multifaceted and heterogeneous clinical phenotypes. This makes research on pain and its treatment a potentially data-rich field as large amounts of complex data are generated. Typical sources of such data are investigations with functional magnetic resonance imaging, complex quantitative sensory testing, next-generation DNA sequencing and functional genomic research approaches, such as those aimed at analgesic drug discovery or repositioning of drugs known from other indications as new analgesics. Extracting information from these big data requires complex data scientific-based methods belonging more to computer science than to statistics. A particular interest is currently focused on machine learning, the methods of which are used for the detection of interesting and biologically meaningful structures in high-dimensional data. Subsequently, classifiers can be created that predict clinical phenotypes from, e.g. clinical or genetic features acquired from subjects. In addition, knowledge discovery in big data accessible in electronic knowledge bases, can be used to generate hypotheses and to exploit the accumulated knowledge about pain for the discovery of new analgesic drugs. This enables so-called data—information—knowledge—wisdom (DIKW) approaches to be followed in pain research. This article highlights current examples from pain research to provide an overview about contemporary data scientific methods used in this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Basbaum AI, Bautista DM, Scherrer G et al (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  CAS  Google Scholar 

  2. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  3. Breimann L, Friedman JH, Olshen RA et al (1993) Classification and regression trees. Chapman and Hall, Boca Raton

    Google Scholar 

  4. Chollet F, Allaire JJ (2018) Deep learning with R. Manning Publications Co, Shelter Island

    Google Scholar 

  5. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21–27

    Article  Google Scholar 

  6. Derry S, Gill D, Phillips T et al (2012) Milnacipran for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008244.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ho TK (1995) Random decision forests. In: IEEE Computer Society (Hrsg) Proceedings of the third international conference on document analysis and recognition, Bd. 1. IEEE Computer Society, Volume, S 278

    Chapter  Google Scholar 

  8. Hu L, Iannetti GD (2016) Painful issues in pain prediction. Trends Neurosci 39:212–220

    Article  CAS  Google Scholar 

  9. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  CAS  Google Scholar 

  10. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybernet 43:59–69

    Article  Google Scholar 

  11. Kringel D, Geisslinger G, Resch E et al (2018) Machine-learned analysis of the association of next-generation sequencing-based human TRPV1 and TRPA1 genotypes with the sensitivity to heat stimuli and topically applied capsaicin. Pain 159:1366–1381

    Article  CAS  Google Scholar 

  12. Kringel D, Lötsch J (2015) Pain research funding by the European Union Seventh Framework Programme. Eur J Pain 19:595–600

    Article  Google Scholar 

  13. Lötsch J, Geisslinger G (2010) Bedside-to-bench pharmacology: a complementary concept to translational pharmacology. Clin Pharmacol Ther 87:647–649

    Article  Google Scholar 

  14. Lötsch J, Geisslinger G (2011) Pharmacogenetics of new analgesics. Br J Pharmacol 163:447–460

    Article  Google Scholar 

  15. Lötsch J, Geisslinger G, Heinemann S, Lerch F, Oertel BG, Ultsch A (2017) QST response patterns to capsaicin- and UV-B-induced local skin hypersensitization in healthy subjects: a machine-learned analysis. Pain 159(1):11–24. https://doi.org/10.1097/j.pain.0000000000001008

    Article  PubMed Central  Google Scholar 

  16. Lötsch J, Oertel BG, Ultsch A (2014) Human models of pain for the prediction of clinical analgesia. Pain. https://doi.org/10.1016/j.pain.2014.07.003

    Article  PubMed  Google Scholar 

  17. Lotsch J, Ultsch A (2017) Machine learning in pain research. Pain 159:623–630

    Article  Google Scholar 

  18. Mayer EA, Gupta A, Kilpatrick LA et al (2015) Imaging brain mechanisms in chronic visceral pain. Pain 156(Suppl 1):S50–S63

    Article  Google Scholar 

  19. Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10:283–294

    Article  CAS  Google Scholar 

  20. Moore RA, Derry S, Aldington D et al (2012) Amitriptyline for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008242.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moore RA, Straube S, Wiffen PJ et al (2009) Pregabalin for acute and chronic pain in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007076.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oertel BG, Lötsch J (2013) Clinical pharmacology of analgesics assessed with human experimental pain models: bridging basic and clinical research. Br J Pharmacol 168:534–553

    Article  CAS  Google Scholar 

  23. Oertel BG, Preibisch C, Wallenhorst T et al (2008) Differential opioid action on sensory and affective cerebral pain processing. Clin Pharmacol Ther 83:577–588

    Article  CAS  Google Scholar 

  24. President’s Information Technology Advisory C (2005) Report to the president: computational science: ensuring America’s competitiveness

    Google Scholar 

  25. Rice AS, Cimino-Brown D, Eisenach JC et al (2008) Animal models and the prediction of efficacy in clinical trials of analgesic drugs: a critical appraisal and call for uniform reporting standards. Pain 139:243–247

    Article  Google Scholar 

  26. Rolke R, Baron R, Maier C et al (2006) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 123:231–243

    Article  CAS  Google Scholar 

  27. Schapire RE, Freund Y (1999) A short introduction to boosting. J Japanese Soc Artif Intell 14:771–780

    Google Scholar 

  28. Thrun MC (2017) A system for projection based clustering through self-organization and swarm intelligence. PhD thesis, Philipps-University, Marburg. Springer, Heidelberg

    Google Scholar 

  29. Ultsch A (2003) The U‑matrix as visualization for projections of high-dimensional data. In: Locarek-Junge H (Hrsg) Proc. 11th IFCS Biennial Conference

    Google Scholar 

  30. Ultsch A, Herrmann L (2010) Self organized swarms for cluster preserving projections of high-dimensional data. In: ECEASST

    Google Scholar 

  31. Ultsch A, Lötsch J (2017) Machine-learned cluster identification in high-dimensional data. J Biomed Inform 66:95–104

    Article  Google Scholar 

  32. Ultsch A, Sieman HP (1990) Kohonen’s self organizing feature maps for exploratory data analysis. In: INNC’90, Int. Neural Network Conference. Kluwer, Dordrecht, S 305–308

    Google Scholar 

  33. Von Hehn CA, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–652

    Article  Google Scholar 

  34. Walker SH, Duncan DB (1967) Estimation of the probability of an event as a function of several independent variables. Biometrika 54:167–179

    Article  CAS  Google Scholar 

  35. Walter C, Oertel BG, Felden L et al (2016) Brain mapping-based model of delta(9)-tetrahydrocannabinol effects on connectivity in the pain matrix. Neuropsychopharmacology 41:1659–1669

    Article  CAS  Google Scholar 

  36. Wickham H, Grolemund G (2017) R for data science: import, tidy, transform, visualize, and model data. O’Reilly Media, Sebastopol, CA 95472, USA

    Google Scholar 

Download references

Förderung

Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz (LOEWE), LOEWE-Zentrum für Translationale Medizin und Pharmakologie (GG, JL)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Lötsch.

Ethics declarations

Interessenkonflikt

J. Lötsch, G. Geisslinger und C. Walter geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lötsch, J., Geisslinger, G. & Walter, C. Wissensgenerierung aus komplexen Datensätzen in der humanexperimentellen Schmerzforschung. Schmerz 33, 502–513 (2019). https://doi.org/10.1007/s00482-019-00412-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-019-00412-5

Schlüsselwörter

Keywords

Navigation