Skip to main content
Log in

Die Rolle der Inflammation bei Arthroseschmerzen

Inflammation and osteoarthritis-related pain

  • Schwerpunkt
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Die Arthrose ist weltweit eine der häufigsten Ursachen für chronische Schmerzen. Entgegen der ursprünglichen Annahme einer nichtentzündlichen Verschleißerkrankung mit Abnutzung des Gelenkknorpels („wear and tear“) wird immunologisch-inflammatorischen Prozessen inzwischen eine entscheidende Beteiligung an der Pathogenese der Arthrose beigemessen. Im Rahmen der Erkrankung kommt es zu einer chronischen Inflammation des gesamten Gelenks mit Infiltration von mononukleären Zellen (Makrophagen und T‑Zellen) in die Synovialmembran und erhöhten Konzentrationen proinflammatorischer Zyto- und Chemokine in der Synovialflüssigkeit und im Blut. Die vermehrte Freisetzung von Entzündungsmediatoren wie Interleukin (IL) IL-1β, IL-6, IL-8, IL-15 und Tumornekrosefaktor‑α (TNF‑α) induziert die Expression chondrodestruktiver Matrixmetalloproteinasen und damit die enzymatische Gelenkdegeneration. Humorale und zelluläre Mechanismen interagieren zwischen Immun- und Nervensystem auch bei der Entwicklung von Arthroseschmerzen. Entzündungsmediatoren wie IL-6 und TNF‑α führen zur peripheren Sensibilisierung freier Nervenendigungen im Gelenk. Weiterhin können entzündungsassoziierte Wachstumsfaktoren wie nerve growth factor (NGF) die Expression von Schmerzrezeptoren an primären Afferenzen triggern, während inflammatorische Neuropeptide die Erregungsschwelle von Gelenknozizeptoren herabsetzen. Der vorliegende Übersichtsartikel diskutiert den Stellenwert der Inflammation bei arthrosebedingten Gelenkschmerzen unter Berücksichtigung der klinischen Symptomatik und wichtiger inflammatorischer Pathomechanismen.

Abstract

Osteoarthritis (OA) is one of the major causes of chronic pain. Although OA has long been considered a non-inflammatory “wear and tear” disease leading to loss of articular cartilage, recent findings provide convincing evidence that inflammatory mechanisms play a pivotal role in the pathophysiology of OA. In OA mononuclear cells (e. g. T‑cells and macrophages) infiltrate the synovial membrane and the levels of pro-inflammatory cytokines in peripheral blood and synovial fluid samples are elevated. Increased release of inflammatory mediators including interleukin (IL) IL-1β, IL-6, IL-8, IL-15 und tumor necrosis factor alpha (TNF‑α) induces the expression of proteolytic enzymes such as matrix metalloproteinases resulting in cartilage breakdown. Molecular and cellular interactions between the immune and nervous system are also involved in the development of OA-related pain. Inflammatory mediators including IL-6 und TNF‑α lead to peripheral sensitization of joint nociceptors and growth factors (e. g. NGF) trigger the expression of TRPV1 channels in primary afferents. Moreover, neuropeptides reduce the threshold of nociceptors of OA joints. The current review highlights the role of inflammatory mechanisms in OA-induced joint pain considering clinical signs of inflammation and major inflammatory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Aloe L, Tuveri MA, Carcassi U et al (1992) Nerve growth factor in the synovial fluid of patients with chronic arthritis. Arthritis Rheum 35:351–355

    CAS  PubMed  Google Scholar 

  2. Azamar-Llamas D, Hernandez-Molina G (2017) Adipokine contribution to the pathogenesis of osteoarthritis. Mediators Inflamm. https://doi.org/10.1155/2017/5468023

    Article  PubMed Central  PubMed  Google Scholar 

  3. Baker K, Grainger A, Niu J et al (2010) Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis 69:1779–1783

    CAS  PubMed  Google Scholar 

  4. Benito MJ, Veale DJ, Fitzgerald O et al (2005) Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 64:1263–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil 21:16–21

    CAS  Google Scholar 

  6. Bondeson J, Blom AB, Wainwright S et al (2010) The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum 62:647–657

    CAS  PubMed  Google Scholar 

  7. Brenn D, Richter F, Schaible HG (2007) Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: an inflammatory mechanism of joint pain. Arthritis Rheum 56:351–359

    CAS  PubMed  Google Scholar 

  8. Chauffier K, Laiguillon MC, Bougault C et al (2012) Induction of the chemokine IL-8/Kc by the articular cartilage: possible influence on osteoarthritis. Joint Bone Spine 79:604–609

    CAS  PubMed  Google Scholar 

  9. Collaborators GDaH (2017) Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1260–1344

    Google Scholar 

  10. Conaghan PG, Felson D, Gold G et al (2006) MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthr Cartil 14(Suppl A):A87–A94

    Google Scholar 

  11. Denk F, Bennett DL, Mcmahon SB (2017) Nerve growth factor and pain mechanisms. Annu Rev Neurosci 40:307–325

    CAS  PubMed  Google Scholar 

  12. Dieppe PA (2005) Relationship between symptoms and structural change in osteoarthritis: what are the important targets for therapy? J Rheumatol 32:1147–1149

    PubMed  Google Scholar 

  13. Distel E, Cadoudal T, Durant S, Poignard A, Chevalier X, Benelli C (2009) The infrapatellar fat pad in knee osteoarthritis: An important source of interleukin‑6 and its soluble receptor. Arthritis Rheum 60(11):3374–3377

    CAS  PubMed  Google Scholar 

  14. Dominick KL, Ahern FM, Gold CH et al (2004) Health-related quality of life and health service use among older adults with osteoarthritis. Arthritis Rheum 51:326–331

    PubMed  Google Scholar 

  15. Feldmann M, Maini RN (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196

    CAS  PubMed  Google Scholar 

  16. Felson DT (2005) The sources of pain in knee osteoarthritis. Curr Opin Rheumatol 17:624–628

    PubMed  Google Scholar 

  17. Freeman MA, Wyke B (1967) The innervation of the knee joint. An anatomical and histological study in the cat. Kaibogaku Zasshi 101:505–532

    CAS  Google Scholar 

  18. Fuchs J, Kuhnert R, Scheidt-Nave C (2017) 12-Monats-Prävalenz von Arthrose in Deutschland. In: Robert Koch-Institut (Hrsg) Epidemiologie und Gesundheitsberichterstattung

    Google Scholar 

  19. Fuchs J, Rabenberg M, Scheidt-Nave C (2013) Prävalenz ausgewählter muskuloskelettaler Erkrankungen. In: Robert Koch-Institut (Hrsg) Epidemiologie und Gesundheitsberichterstattung

    Google Scholar 

  20. Gersing AS, Solka M, Joseph GB et al (2016) Progression of cartilage degeneration and clinical symptoms in obese and overweight individuals is dependent on the amount of weight loss: 48-month data from the Osteoarthritis Initiative. Osteoarthr Cartil 24:1126–1134

    CAS  Google Scholar 

  21. Gleeson M, Bishop NC, Stensel DJ et al (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11:607–615

    CAS  PubMed  Google Scholar 

  22. Gobezie R, Kho A, Krastins B et al (2007) High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther 9:R36

    PubMed Central  PubMed  Google Scholar 

  23. Gomis A, Meini S, Miralles A et al (2013) Blockade of nociceptive sensory afferent activity of the rat knee joint by the bradykinin B2 receptor antagonist fasitibant. Osteoarthr Cartil 21:1346–1354

    CAS  Google Scholar 

  24. Gosset M, Berenbaum F, Levy A et al (2008) Mechanical stress and prostaglandin E2 synthesis in cartilage. Biorheology 45:301–320

    PubMed  Google Scholar 

  25. Guccione AA, Felson DT, Anderson JJ et al (1994) The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am J Public Health 84:351–358

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Guermazi A, Roemer FW, Hayashi D et al (2011) Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis 70:805–811

    PubMed  Google Scholar 

  27. Hannan MT, Felson DT, Pincus T (2000) Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol 27:1513–1517

    CAS  PubMed  Google Scholar 

  28. Haywood L, Mcwilliams DF, Pearson CI et al (2003) Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum 48:2173–2177

    CAS  PubMed  Google Scholar 

  29. Hill CL, Gale DG, Chaisson CE et al (2001) Knee effusions, popliteal cysts, and synovial thickening: association with knee pain in osteoarthritis. J Rheumatol 28:1330–1337

    CAS  PubMed  Google Scholar 

  30. Hill CL, Hunter DJ, Niu J et al (2007) Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis 66:1599–1603

    PubMed Central  PubMed  Google Scholar 

  31. Hochberg MC, Tive LA, Abramson SB et al (2016) When is osteonecrosis not osteonecrosis?: Adjudication of reported serious adverse joint events in the Tanezumab Clinical Development Program. Arthritis Rheumatol 68:382–391

    CAS  PubMed  Google Scholar 

  32. Hoeven TA, Kavousi M, Clockaerts S et al (2013) Association of atherosclerosis with presence and progression of osteoarthritis: the Rotterdam Study. Ann Rheum Dis 72:646–651

    PubMed  Google Scholar 

  33. Hunter DJ, Mcdougall JJ, Keefe FJ (2008) The symptoms of osteoarthritis and the genesis of pain. Rheum Dis Clin North Am 34:623–643

    PubMed Central  PubMed  Google Scholar 

  34. Iannone F, De Bari C, Dell’accio F et al (2002) Increased expression of nerve growth factor (NGF) and high affinity NGF receptor (p140 TrkA) in human osteoarthritic chondrocytes. Rheumatology (Oxf) 41:1413–1418

    CAS  Google Scholar 

  35. Imamura M, Ezquerro F, Marcon Alfieri F et al (2015) Serum levels of proinflammatory cytokines in painful knee osteoarthritis and sensitization. Int J Inflam. https://doi.org/10.1155/2015/329792

    Article  PubMed Central  PubMed  Google Scholar 

  36. Inglis JJ, Notley CA, Essex D et al (2007) Collagen-induced arthritis as a model of hyperalgesia: functional and cellular analysis of the analgesic actions of tumor necrosis factor blockade. Arthritis Rheum 56:4015–4023

    PubMed  Google Scholar 

  37. Ioan-Facsinay A, Kloppenburg M (2013) An emerging player in knee osteoarthritis: the infrapatellar fat pad. Arthrit Res Therap 15(6):225

    Google Scholar 

  38. Ishijima M, Watari T, Naito K et al (2011) Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis. Arthritis Res Ther 13:R22

    PubMed Central  PubMed  Google Scholar 

  39. Jordan JM, Helmick CG, Renner JB et al (2007) Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: the Johnston County Osteoarthritis Project. J Rheumatol 34:172–180

    PubMed  Google Scholar 

  40. Klein-Wieringa IR, De Lange-Brokaar BJ, Yusuf E et al (2016) Inflammatory cells in patients with endstage knee osteoarthritis: a comparison between the synovium and the infrapatellar fat pad. J Rheumatol 43:771–778

    PubMed  Google Scholar 

  41. Krasnokutsky S, Belitskaya-Levy I, Bencardino J et al (2011) Quantitative magnetic resonance imaging evidence of synovial proliferation is associated with radiographic severity of knee osteoarthritis. Arthritis Rheum 63:2983–2991

    PubMed Central  PubMed  Google Scholar 

  42. Krenn V, Morawietz L, Burmester GR et al (2006) Synovitis score: discrimination between chronic low-grade and high-grade synovitis. Histopathology 49:358–364

    CAS  PubMed  Google Scholar 

  43. Lane NE, Schnitzer TJ, Birbara CA et al (2010) Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med 363:1521–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lawrence JS, Bremner JM, Bier F (1966) Osteo-arthrosis. Prevalence in the population and relationship between symptoms and x‑ray changes. Ann Rheum Dis 25:1–24

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35

    PubMed Central  PubMed  Google Scholar 

  46. Li YS, Luo W, Zhu SA et al (2017) T cells in osteoarthritis: alterations and beyond. Front Immunol 8:356

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Liu-Bryan R, Terkeltaub R (2015) Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 11:35–44

    CAS  PubMed  Google Scholar 

  48. Loeser RF, Goldring SR, Scanzello CR et al (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707

    PubMed Central  PubMed  Google Scholar 

  49. Loeuille D, Chary-Valckenaere I, Champigneulle J et al (2005) Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum 52:3492–3501

    PubMed  Google Scholar 

  50. Lotz M, Carson DA, Vaughan JH (1987) Substance P activation of rheumatoid synoviocytes: neural pathway in pathogenesis of arthritis. Science 235:893–895

    CAS  PubMed  Google Scholar 

  51. Mcalindon TE, Bannuru RR, Sullivan MC et al (2014) OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil 22:363–388

    CAS  Google Scholar 

  52. Meini S, Maggi CA (2008) Knee osteoarthritis: a role for bradykinin? Inflamm Res 57:351–361

    CAS  PubMed  Google Scholar 

  53. Miotla Zarebska J, Chanalaris A, Driscoll C et al (2017) CCL2 and CCR2 regulate pain-related behaviour and early gene expression in post-traumatic murine osteoarthritis but contribute little to chondropathy. Osteoarthr Cartil 25:406–412

    CAS  Google Scholar 

  54. Moradi B, Rosshirt N, Tripel E et al (2015) Unicompartmental and bicompartmental knee osteoarthritis show different patterns of mononuclear cell infiltration and cytokine release in the affected joints. Clin Exp Immunol 180:143–154

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Moradi B, Schnatzer P, Hagmann S et al (2014) CD4(+)CD25(+)/highCD127low/(−) regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints—analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood. Arthritis Res Ther 16:R97

    PubMed Central  PubMed  Google Scholar 

  56. Muraki S, Akune T, Teraguchi M et al (2015) Quadriceps muscle strength, radiographic knee osteoarthritis and knee pain: the ROAD study. BMC Musculoskelet Disord 16:305

    PubMed Central  PubMed  Google Scholar 

  57. Murray CJ, Lopez AD, Organization WH (1996) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020: summary

    Google Scholar 

  58. Neogi T (2013) The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil 21:1145–1153

    CAS  Google Scholar 

  59. Niissalo S, Hukkanen M, Imai S et al (2002) Neuropeptides in experimental and degenerative arthritis. Ann N Y Acad Sci 966:384–399

    CAS  PubMed  Google Scholar 

  60. Oh SB, Tran PB, Gillard SE et al (2001) Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 21:5027–5035

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Orita S, Koshi T, Mitsuka T et al (2011) Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee. BMC Musculoskelet Disord 12:144

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Pessler F, Dai L, Diaz-Torne C et al (2008) The synovitis of “non-inflammatory” orthopaedic arthropathies: a quantitative histological and immunohistochemical analysis. Ann Rheum Dis 67:1184–1187

    CAS  PubMed  Google Scholar 

  63. Poonpet T, Honsawek S (2014) Adipokines: biomarkers for osteoarthritis? World J Orthop 5:319–327

    PubMed Central  PubMed  Google Scholar 

  64. Pottie P, Presle N, Terlain B et al (2006) Obesity and osteoarthritis: more complex than predicted! Ann Rheum Dis 65:1403–1405

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Prencipe G, Minnone G, Strippoli R et al (2014) Nerve growth factor downregulates inflammatory response in human monocytes through TrkA. J Immunol 192:3345–3354

    CAS  PubMed  Google Scholar 

  66. Puenpatom RA, Victor TW (2009) Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med 121:9–20

    PubMed  Google Scholar 

  67. Raychaudhuri SP, Raychaudhuri SK (2009) The regulatory role of nerve growth factor and its receptor system in fibroblast-like synovial cells. Scand J Rheumatol 38:207–215

    CAS  PubMed  Google Scholar 

  68. Richter F, Natura G, Loser S et al (2010) Tumor necrosis factor causes persistent sensitization of joint nociceptors to mechanical stimuli in rats. Arthritis Rheum 62:3806–3814

    CAS  PubMed  Google Scholar 

  69. Robinson WH, Lepus CM, Wang Q et al (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:580–592

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Roemer FW, Guermazi A, Felson DT et al (2011) Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis 70:1804–1809

    PubMed  Google Scholar 

  71. Ross R, Bradshaw AJ (2009) The future of obesity reduction: beyond weight loss. Nat Rev Endocrinol 5:319–325

    PubMed  Google Scholar 

  72. Scanzello CR, Goldring SR (2012) The role of synovitis in osteoarthritis pathogenesis. Bone 51:249–257

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Scanzello CR, Mckeon B, Swaim BH et al (2011) Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis Rheum 63:391–400

    PubMed Central  PubMed  Google Scholar 

  74. Schaible HG (2012) Mechanisms of chronic pain in osteoarthritis. Curr Rheumatol Rep 14:549–556

    CAS  PubMed  Google Scholar 

  75. Schaible HG (2014) Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther 16:470

    PubMed Central  PubMed  Google Scholar 

  76. Schaible HG, Richter F, Ebersberger A et al (2009) Joint pain. Exp Brain Res 196:153–162

    PubMed  Google Scholar 

  77. Schaible HG, Schmidt RF (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54:1109–1122

    CAS  PubMed  Google Scholar 

  78. Schett G, Kleyer A, Perricone C et al (2013) Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care 36:403–409

    PubMed Central  PubMed  Google Scholar 

  79. Seidel MF, Herguijuela M, Forkert R et al (2010) Nerve growth factor in rheumatic diseases. Semin Arthritis Rheum 40:109–126

    CAS  PubMed  Google Scholar 

  80. Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6:625

    CAS  PubMed  Google Scholar 

  81. Sharma A, Kudesia P, Shi Q et al (2016) Anxiety and depression in patients with osteoarthritis: impact and management challenges. Open Access Rheumatol 8:103–113

    PubMed Central  PubMed  Google Scholar 

  82. Sohn DH, Sokolove J, Sharpe O et al (2012) Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via toll-like receptor 4. Arthritis Res Ther 14:R7

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Sokolove J, Lepus CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 5:77–94

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Song IH, Althoff CE, Hermann KG et al (2009) Contrast-enhanced ultrasound in monitoring the efficacy of a bradykinin receptor 2 antagonist in painful knee osteoarthritis compared with MRI. Ann Rheum Dis 68:75–83

    CAS  PubMed  Google Scholar 

  85. Sowers M, Karvonen-Gutierrez CA, Jacobson JA et al (2011) Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J Bone Joint Surg Am 93:241–251

    PubMed Central  PubMed  Google Scholar 

  86. Steensberg A, Fischer CP, Keller C et al (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285:E433–E437

    CAS  PubMed  Google Scholar 

  87. Suri S, Gill SE, Massena De Camin S et al (2007) Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis 66:1423–1428

    PubMed Central  PubMed  Google Scholar 

  88. Sutton S, Clutterbuck A, Harris P et al (2009) The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J 179:10–24

    CAS  PubMed  Google Scholar 

  89. Thakur M, Dickenson AH, Baron R (2014) Osteoarthritis pain: nociceptive or neuropathic? Nat Rev Rheumatol 10:374–380

    PubMed  Google Scholar 

  90. Torres L, Dunlop DD, Peterfy C et al (2006) The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthr Cartil 14:1033–1040

    CAS  Google Scholar 

  91. Ushiyama T, Chano T, Inoue K et al (2003) Cytokine production in the infrapatellar fat pad: another source of cytokines in knee synovial fluids. Ann Rheum Dis 62:108–112

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Walsh DA, Mcwilliams DF, Turley MJ et al (2010) Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxf) 49:1852–1861

    CAS  Google Scholar 

  93. Wood JN (2010) Nerve growth factor and pain. N Engl J Med 363:1572–1573

    PubMed  Google Scholar 

  94. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656

    PubMed Central  PubMed  Google Scholar 

  95. Wylde V, Hewlett S, Learmonth ID et al (2011) Persistent pain after joint replacement: prevalence, sensory qualities, and postoperative determinants. Pain 152:566–572

    PubMed  Google Scholar 

  96. Wylde V, Trela-Larsen L, Whitehouse MR et al (2017) Preoperative psychosocial risk factors for poor outcomes at 1 and 5 years after total knee replacement. Acta Orthop 88:530–536

    PubMed Central  PubMed  Google Scholar 

  97. Yeh SH, Chuang H, Lin LW et al (2006) Regular tai chi chuan exercise enhances functional mobility and CD4CD25 regulatory T cells. Br J Sports Med 40:239–243

    PubMed Central  PubMed  Google Scholar 

  98. Yudkin JS (2007) Inflammation, obesity, and the metabolic syndrome. Horm Metab Res 39:707–709

    CAS  PubMed  Google Scholar 

  99. Yusuf E, Nelissen RG, Ioan-Facsinay A et al (2010) Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis 69:761–765

    PubMed  Google Scholar 

  100. Zhang Y, Nevitt M, Niu J, Lewis C, Torner J, Guermazi A et al (2011) Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthrit Rheum 63(3):691–699

    Google Scholar 

  101. Zhuo Q, Yang W, Chen J et al (2012) Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol 8:729–737

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Moradi.

Ethics declarations

Interessenkonflikt

T. A. Nees, N. Rosshirt, T. Reiner, M. Schiltenwolf und B. Moradi geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nees, T.A., Rosshirt, N., Reiner, T. et al. Die Rolle der Inflammation bei Arthroseschmerzen. Schmerz 33, 4–12 (2019). https://doi.org/10.1007/s00482-018-0346-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-018-0346-y

Schlüsselwörter

Keywords

Navigation