Skip to main content
Log in

Schmerz und Schmerzlosigkeit

Mutationen spannungsabhängiger Natriumkanäle

Pain and analgesia

Mutations of voltage-gated sodium channels

  • Übersichten
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Spannungsabhängige Natriumkanäle (Nav) sind für die Generierung und Weiterleitung von Aktionspotentialen in erregbaren Zellen, und somit auch für die Funktion sensibler Nerven, verantwortlich. In den letzten 20 Jahren konnten drei Nav-Untereinheiten in sensorischen Afferenzen identifiziert werden, Nav1.7, Nav1.8 und Nav1.9, denen eine spezifische Rolle für die Funktion nozizeptiver Neurone zugesprochen wird. Bislang konnten keine selektiven Natriumkanalblocker in der Klinik etabliert werden. Durch die Translation präklinischer Daten in klinisch manifeste Krankheitsbilder erhöht sich jedoch die Relevanz der obigen Nav-Untereinheiten für die Schmerzentstehung beim Menschen. Im Mittelpunkt steht seit zehn Jahren Nav1.7, für den eine sehr große Anzahl von hereditären Mutationen nachgewiesen wurde. Sogenannte Gain-of-function-Mutationen (Verstärkung der Genaktivität) von Nav1.7 sind kausal für die Schmerzsymptome der primären Erythromelalgie (anfallsartige Hauterkrankung mit Rötung und Überwärmung der distalen Extremitäten) und die paroxysmale extreme Schmerzstörung. Zudem wurde ein Zusammenhang einiger Nav1.7-Mutationen mit schmerzhaften idiopathischen Small-fiber-Neuropathien (schmerzhafte sensorische Neuropathien) nachgewiesen. Umgekehrt führen „Loss-of-function“-Nav1.7-Mutationen (Drosselung der Genaktivität) zu einer kongenitalen Schmerzlosigkeit. Erst kürzlich konnten mehrere „Gain-of-function“-Mutationen in Nav1.8 und Nav1.9 bei Patienten mit schmerzhaften Neuropathien nachgewiesen werden, wobei auch eine der „Gain-of-function“-Nav1.9-Mutationen zur kompletten Schmerzlosigkeit führte. Dieser Artikel bietet eine Übersicht über die bislang publizierten Studien zu schmerzhaften Nav-Mutationen mit klinischer Relevanz, und stellt die damit möglichen Konsequenzen für die Therapie verschiedener Schmerzsymptome in Aussicht.

Abstract

Voltage-gated sodium channels (Navs) are crucial for the generation and propagation of action potentials in all excitable cells, and therefore for the function of sensory neurons as well. Preclinical research over the past 20 years identified three Nav-isoforms in sensory neurons, namely Nav1.7, Nav1.8 and Nav1.9. A specific role for the function of nociceptive neurons was postulated for each. Whereas no selective sodium channel inhibitors have been established in the clinic so far, the relevance of all three isoforms regarding the pain sensitivity in humans is currently undergoing a remarkable verification through the translation of preclinical data into clinically manifest pictures. For the last ten years, Nav1.7 has been the main focus of clinical interest, as a large number of hereditary mutants were identified. The so-called “gain-of-function” mutations of Nav1.7 cause the pain syndromes hereditary erythromelalgia and paroxysmal extreme pain disorder. In addition, several Nav1.7 mutants were shown to be associated with small-fiber neuropathies. On the contrary, “loss-of-function” Nav1.7 mutants lead to a congenital insensitivity to pain. Recently, several gain-of-function mutations in Nav1.8 and Nav1.9 have been identified in patients suffering from painful peripheral neuropathies. However, another gain-of-function Nav1.9 mutation is associated with congenital insensitivity to pain. This review offers an overview of published work on painful Nav mutations with clinical relevance, and proposes possible consequences for the therapy of different pain symptoms resulting from these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Arisawa T, Tahara T, Shiroeda H et al (2013) Genetic polymorphisms of SCN10A are associated with functional dyspepsia in Japanese subjects. J Gastroenterol 48:73–80

    Article  CAS  PubMed  Google Scholar 

  2. Choi JS, Zhang L, Dib-Hajj SD et al (2009) Mexiletine-responsive erythromelalgia due to a new Na(v)1.7 mutation showing use-dependent current fall-off. Exp Neurol 216:383–389

    Article  CAS  PubMed  Google Scholar 

  3. Choi JS, Cheng X, Foster E et al (2010) Alternative splicing may contribute to time-dependent manifestation of inherited erythromelalgia. Brain 133:1823–1835

    Article  PubMed  Google Scholar 

  4. Choi JS, Boralevi F, Brissaud O et al (2011) Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons. Nat Rev Neurol 7:51–55

    Article  CAS  PubMed  Google Scholar 

  5. Cox JJ, Reimann F, Nicholas AK et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898

    Article  CAS  PubMed  Google Scholar 

  6. Dabby R, Sadeh M, Broitman Y et al (2015) Painful small fiber neuropathy with gastroparesis: A new phenotype with a novel mutation in the SCN10A gene. J Clin Neurosci 26:84–88

    Article  PubMed  Google Scholar 

  7. Dib-Hajj SD, Yang Y, Black JA et al (2013) The Na(V)1.7 sodium channel: from molecule to man. Nat Rev Neurosci 14:49–62

    Article  CAS  PubMed  Google Scholar 

  8. Eberhardt M, Nakajima J, Klinger AB et al (2014) Inherited pain: sodium channel Nav1.7 A1632T mutation causes erythromelalgia due to a shift of fast inactivation. J Biol Chem 289:1971–1980

    Article  CAS  PubMed  Google Scholar 

  9. Estacion M, Dib-Hajj SD, Benke PJ et al (2008) NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J Neurosci 28:11079–11088

    Article  CAS  PubMed  Google Scholar 

  10. Estacion M, Harty TP, Choi JS et al (2009) A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Ann Neurol 66:862–866

    Article  CAS  PubMed  Google Scholar 

  11. Estacion M, Han C, Choi JS et al (2011) Intra- and interfamily phenotypic diversity in pain syndromes associated with a gain-of-function variant of NaV1.7. Mol Pain 7:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Faber CG, Hoeijmakers JG, Ahn HS et al (2012) Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 71:26–39

    Article  CAS  PubMed  Google Scholar 

  13. Faber CG, Lauria G, Merkies IS et al (2012) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci USA 109:19444–19449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fertleman CR, Baker MD, Parker KA et al (2006) SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52:767–774

    Article  CAS  PubMed  Google Scholar 

  15. Fischer TZ, Gilmore ES, Estacion M et al (2009) A novel Nav1.7 mutation producing carbamazepine-responsive erythromelalgia. Ann Neurol 65:733–741

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gautron L, Sakata I, Udit S et al (2011) Genetic tracing of Nav1.8-expressing vagal afferents in the mouse. J Comp Neurol 519:3085–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldberg YP, Price N, Namdari R et al (2012) Treatment of Na(v)1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain 153:80–85

    Article  CAS  PubMed  Google Scholar 

  18. Han C, Vasylyev D, Macala LJ et al (2014) The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability. J Neurol Neurosurg Psychiatr 85:499–505

    Article  PubMed  Google Scholar 

  19. Han C, Estacion M, Huang J et al (2015) Human Nav1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons. J Neurophysiol 113:3172–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrer JU, Uceyler N, Doppler K et al (2014) Neuropathic pain in two-generation twins carrying the sodium channel Nav1.7 functional variant R1150W. Pain 155:2199–2203

    Article  CAS  PubMed  Google Scholar 

  21. Hoeijmakers JG, Faber CG, Lauria G et al (2012) Small-fibre neuropathies – advances in diagnosis, pathophysiology and management. Nat Rev Neurol 8:369–379

    Article  CAS  PubMed  Google Scholar 

  22. Holliday KL, Thomson W, Neogi T et al (2012) The non-synonymous SNP, R1150W, in SCN9A is not associated with chronic widespread pain susceptibility. Mol Pain 8:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang J, Yang Y, Zhao P et al (2013) Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J Neurosci 33:14087–14097

    Article  CAS  PubMed  Google Scholar 

  24. Huang J, Han C, Estacion M et al (2014) Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain 137:1627–1642

    Article  PubMed  Google Scholar 

  25. Imai N, Miyake N, Saito Y et al (2015) Short-lasting unilateral neuralgiform headache attacks with ispilateral facial flushing is a new variant of paroxysmal extreme pain disorder. J Headache Pain 16:519

    Article  PubMed  Google Scholar 

  26. Lampert A, Eberhardt M, Waxman SG (2014) Altered sodium channel gating as molecular basis for pain: contribution of activation, inactivation, and resurgent currents. Handb Exp Pharmacol 221:91–110

    Article  CAS  PubMed  Google Scholar 

  27. Leipold E, Liebmann L, Korenke GC et al (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 45:1399–1404

    Article  CAS  PubMed  Google Scholar 

  28. Lolignier S, Bonnet C, Gaudioso C et al (2015) The nav1.9 channel is a key determinant of cold pain sensation and cold allodynia. Cell Rep 11:1067–1078

    Article  CAS  PubMed  Google Scholar 

  29. Luiz AP, Kopach O, Santana-Varela S et al (2015) The role of Nav1.9 channel in the development of neuropathic orofacial pain associated with trigeminal neuralgia. Mol Pain 11:72

    PubMed  PubMed Central  Google Scholar 

  30. Minett MS, Nassar MA, Clark AK et al (2012) Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat Commun 3:791

    Article  PubMed  PubMed Central  Google Scholar 

  31. Minett MS, Pereira V, Sikandar S et al (2015) Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat Commun 6:8967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nassar MA, Stirling LC, Forlani G et al (2004) Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci USA 101:12706–12711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Persson AK, Liu S, Faber CG et al (2013) Neuropathy-associated Nav1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons. Ann Neurol 73:140–145

    Article  CAS  PubMed  Google Scholar 

  34. Phatarakijnirund V, Mumm S, McAlister WH et al (2016) Congenital insensitivity to pain: Fracturing without apparent skeletal pathobiology caused by an autosomal dominant, second mutation in SCN11A encoding voltage-gated sodium channel 1.9. Bone 84:289–298

    Article  CAS  PubMed  Google Scholar 

  35. Rice FL, Albrecht PJ, Wymer JP et al (2015) Sodium channel Nav1.7 in vascular myocytes, endothelium, and innervating axons in human skin. Mol Pain 11:26

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rolke R, Baron R, Maier C et al (2006) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 123:231–243

    Article  CAS  PubMed  Google Scholar 

  37. Rush AM, Waxman SG (2004) PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G‑proteins. Brain Res 1023:264–271

    Article  CAS  PubMed  Google Scholar 

  38. Rush AM, Dib-Hajj SD, Liu S et al (2006) A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci USA 103:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rush AM, Cummins TR, Waxman SG (2007) Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol (Lond) 579:1–14

    Article  CAS  Google Scholar 

  40. Vargas-Alarcon G, Alvarez-Leon E, Fragoso JM et al (2012) A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia. BMC Musculoskelet Disord 13:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Waxman SG (2013) Painful Na-channelopathies: an expanding universe. Trends Mol Med 19:406–409

    Article  CAS  PubMed  Google Scholar 

  42. Woolf CJ, Bennett GJ, Doherty M et al (1998) Towards a mechanism-based classification of pain? Pain 77:227–229

    Article  CAS  PubMed  Google Scholar 

  43. Yang Y, Wang Y, Li S et al (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 41:171–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan J, Matsuura E, Higuchi Y et al (2013) Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology 80:1641–1649

    Article  CAS  PubMed  Google Scholar 

  45. Yuan R, Zhang X, Deng Q et al (2011) Two novel SCN9A gene heterozygous mutations may cause partial deletion of pain perception. Pain Med 12:1510–1514

    Article  PubMed  Google Scholar 

  46. Zhang XY, Wen J, Yang W et al (2013) Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet 93:957–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zimmermann K, Leffler A, Babes A et al (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447:855–858

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Leffler.

Ethics declarations

Interessenkonflikt

M. J. Eberhardt und A. Leffler geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eberhardt, M.J., Leffler, A. Schmerz und Schmerzlosigkeit . Schmerz 31, 14–22 (2017). https://doi.org/10.1007/s00482-016-0139-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-016-0139-0

Schlüsselwörter

Keywords

Navigation