Skip to main content
Log in

Intrinsische Hirnaktivität bei Schmerzen

Intrinsic brain activity with pain

  • Übersichten
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Neben der Antwort auf nozizeptive Schmerzreize sind auch andere neurale Funktionsmodi des Gehirns zum umfassenden Verständnis der Schmerzverarbeitung beim Menschen notwendig. Ohne Stimulation generiert das Gehirn spontan niederfrequente Wellen neuronaler Aktivität und organisiert sich endogen in verschiedenen Netzwerken. In dieser Übersicht werden die erst in jüngster Zeit akkumulierenden neurobiologischen Erkenntnisse zu dieser intrinsischen Hirnaktivität zusammengefasst und in Beziehung zu akutem sowie chronischem Schmerzgeschehen gesetzt.

Abstract

Besides the responses to nociceptive stimuli other neural function modes of the brain are necessary to obtain a comprehensive understanding of pain processing in humans. During a resting state without extrinsic stimulation the human brain generates spontaneous low frequency fluctuations of neural activity. This intrinsic activity does not reflect random background noise but is highly organized in several networks. Based on the findings of recent functional imaging studies, the role of these resting state networks in acute and chronic pain is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Auvray M, Myin E, Spence C (2010) The sensory-discriminative and affective-motivational aspects of pain. Neurosci Biobehav Rev 34:214–223

    Article  PubMed  Google Scholar 

  2. Bai L, Qin W, Tian J et al (2009) Acupuncture modulates spontaneous activities in the anticorrelated resting brain networks. Brain Res 1279:37–49

    Article  PubMed  CAS  Google Scholar 

  3. Bair MJ, Robinson RL, Katon W et al (2003) Depression and pain comorbidity: a literature review. Arch Intern Med 163:2433–2445

    Article  PubMed  Google Scholar 

  4. Balenzuela P, Chernomoretz A, Fraiman D et al (2010) Modular organization of brain resting state networks in chronic back pain patients. Front Neuroinform 4:116

    Article  PubMed  Google Scholar 

  5. Baliki MN, Geha PY, Apkarian AV et al (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28:1398–1403

    Article  PubMed  CAS  Google Scholar 

  6. Bar M (2009) The proactive brain: memory for predictions. Philos Trans R Soc Lond B Biol Sci 364:1235–1243

    Article  PubMed  Google Scholar 

  7. Barrett LF, Bar M (2009) See it with feeling: affective predictions during object perception. Philos Trans R Soc Lond B Biol Sci 364:1325–1334

    Article  PubMed  CAS  Google Scholar 

  8. Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46:575–605

    Article  PubMed  CAS  Google Scholar 

  9. Berger H (1931) Über das Elektroenkephalogramm des Menschen. Dritte Mitteilung. Arch Psychiatr Nervenkr 94:16–60

    Article  Google Scholar 

  10. Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  PubMed  CAS  Google Scholar 

  11. Boly M, Balteau E, Schnakers C et al (2007) Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A 104:12187–12192

    Article  PubMed  CAS  Google Scholar 

  12. Broyd SJ, Demanuele C, Debener S et al (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33:279–296

    Article  PubMed  Google Scholar 

  13. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  14. Calhoun VD, Adali T, Pearlson GD et al (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151

    Article  PubMed  CAS  Google Scholar 

  15. Cauda F, Sacco K, D’agata F et al (2009) Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neurosci 10:138

    Article  PubMed  Google Scholar 

  16. Cauda F, Sacco K, Duca S et al (2009) Altered resting state in diabetic neuropathic pain. PLoS One 4:e4542

    Article  PubMed  Google Scholar 

  17. Cohen MX (2011) It’s about time. Front Hum Neurosci 5:2

    Article  PubMed  Google Scholar 

  18. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    PubMed  CAS  Google Scholar 

  19. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13:500–505

    Article  PubMed  CAS  Google Scholar 

  20. Craig AD (2003) A new view of pain as a homeostatic emotion. Trends Neurosci 26:303–307

    Article  PubMed  CAS  Google Scholar 

  21. D’Argembeau A, Collette F, Van Der Linden M et al (2005) Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage 25:616–624

    Article  Google Scholar 

  22. Decety J, Jackson PL (2004) The functional architecture of human empathy. Behav Cogn Neurosci Rev 3:71–100

    Article  PubMed  Google Scholar 

  23. Decety J, Lamm C (2006) Human empathy through the lens of social neuroscience. ScientificWorldJournal 6:1146–1163

    Article  PubMed  Google Scholar 

  24. Decety J, Michalska KJ, Akitsuki Y (2008) Who caused the pain? An fMRI investigation of empathy and intentionality in children. Neuropsychologia 46:2607–2614

    Article  PubMed  Google Scholar 

  25. Dhond RP, Yeh C, Park K et al (2008) Acupuncture modulates resting state connectivity in default and sensorimotor brain networks. Pain 136:407–418

    Article  PubMed  Google Scholar 

  26. Drahovzal DN, Stewart SH, Sullivan MJ (2006) Tendency to catastrophize somatic sensations: pain catastrophizing and anxiety sensitivity in predicting headache. Cogn Behav Ther 35:226–235

    Article  PubMed  Google Scholar 

  27. Eichele T, Debener S, Calhoun VD et al (2008) Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci U S A 105:6173–6178

    Article  PubMed  CAS  Google Scholar 

  28. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    Article  PubMed  CAS  Google Scholar 

  29. Garrity AG, Pearlson GD, Mckiernan K et al (2007) Aberrant „default mode“ functional connectivity in schizophrenia. Am J Psychiatry 164:450–457

    Article  PubMed  Google Scholar 

  30. Gracely RH, Geisser ME, Giesecke T et al (2004) Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127:835–843

    Article  PubMed  CAS  Google Scholar 

  31. Greicius MD, Krasnow B, Reiss AL et al (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258

    Article  PubMed  CAS  Google Scholar 

  32. Gusnard DA, Akbudak E, Shulman GL et al (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A 98:4259–4264

    Article  PubMed  CAS  Google Scholar 

  33. Hui KK, Marina O, Claunch JD et al (2009) Acupuncture mobilizes the brain’s default mode and its anti-correlated network in healthy subjects. Brain Res 1287:84–103

    Article  PubMed  CAS  Google Scholar 

  34. Hui KK, Marina O, Liu J et al (2010) Acupuncture, the limbic system, and the anticorrelated networks of the brain. Auton Neurosci 157:81–90

    Article  PubMed  Google Scholar 

  35. Kety SS (1963) The circulation and energy metabolism of the brain. Clin Neurosurg 9:56–66

    PubMed  CAS  Google Scholar 

  36. Koch W, Teipel S, Mueller S et al (2010) Effects of aging on default mode network activity in resting state fMRI: does the method of analysis matter? Neuroimage 51:280–287

    Article  PubMed  CAS  Google Scholar 

  37. Kong J, Loggia ML, Zyloney C et al (2010) Exploring the brain in pain: activations, deactivations and their relation. Pain 148:257–267

    Article  PubMed  Google Scholar 

  38. Kong J, Tu PC, Zyloney C et al (2010) Intrinsic functional connectivity of the periaqueductal gray, a resting fMRI study. Behav Brain Res 211:215–219

    Article  PubMed  Google Scholar 

  39. Kunz M, Chen JI, Lautenbacher S et al (2011) Cerebral regulation of facial expressions of pain. J Neurosci 31:8730–8738

    Article  PubMed  CAS  Google Scholar 

  40. Lamm C, Decety J, Singer T (2011) Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54:2492–2502

    Article  PubMed  Google Scholar 

  41. Legrain V, Iannetti GD, Plaghki L et al (2011) The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 93:111–124

    Article  PubMed  Google Scholar 

  42. Loyd DR, Murphy AZ (2009) The role of the periaqueductal gray in the modulation of pain in males and females: are the anatomy and physiology really that different? Neural Plast 2009:462879

    Article  PubMed  Google Scholar 

  43. Malinen S, Vartiainen N, Hlushchuk Y et al (2010) Aberrant temporal and spatial brain activity during rest in patients with chronic pain. Proc Natl Acad Sci U S A 107:6493–6497

    Article  PubMed  CAS  Google Scholar 

  44. Mantini D, Caulo M, Ferretti A et al (2009) Noxious somatosensory stimulation affects the default mode of brain function: evidence from functional MR imaging. Radiology 253:797–804

    Article  PubMed  Google Scholar 

  45. Minzenberg MJ, Yoon JH, Carter CS (2011) Modafinil modulation of the default mode network. Psychopharmacology (Berl) 215:23–31

    Google Scholar 

  46. Moisset X, Bouhassira D (2007) Brain imaging of neuropathic pain. Neuroimage 37(Suppl 1):80–88

    Article  Google Scholar 

  47. Napadow V, Lacount L, Park K et al (2010) Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 62:2545–2555

    Article  PubMed  Google Scholar 

  48. Narasimhan M, Campbell N (2010) A tale of two comorbidities: understanding the neurobiology of depression and pain. Indian J Psychiatry 52:127–130

    Article  PubMed  Google Scholar 

  49. Northoff G, Qin P, Nakao T (2010) Rest-stimulus interaction in the brain: a review. Trends Neurosci 33:277–284

    Article  PubMed  CAS  Google Scholar 

  50. Northoff G, Walter M, Schulte RF et al (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10:1515–1517

    Article  PubMed  CAS  Google Scholar 

  51. Otti A, Guendel H, Laer L et al (2010) I know the pain you feel - how the human brain’s default mode predicts our resonance to another’s suffering. Neuroscience 169:143–148

    Article  PubMed  CAS  Google Scholar 

  52. Otti A, Gundel H, Wohlschlager A et al (2011) „Default-mode“-Netzwerk des Gehirns. Neurobiologie und klinische Bedeutung. Nervenarzt, doi 10.1007/s00115-011-3307-6

  53. Perl ER (2011) Pain mechanisms: a commentary on concepts and issues. Prog Neurobiol 94:20–38

    Article  PubMed  Google Scholar 

  54. Petrak F, Hardt J, Kappis B et al (2003) Determinants of health-related quality of life in patients with persistent somatoform pain disorder. Eur J Pain 7:463–471

    Article  PubMed  Google Scholar 

  55. Phelps EA, Ledoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187

    Article  PubMed  CAS  Google Scholar 

  56. Ploner M, Lee MC, Wiech K et al (2011) Flexible cerebral connectivity patterns subserve contextual modulations of pain. Cereb Cortex 21:719–726

    Article  PubMed  Google Scholar 

  57. Ploner M, Lee MC, Wiech K et al (2010) Prestimulus functional connectivity determines pain perception in humans. Proc Natl Acad Sci U S A 107:355–360

    Article  PubMed  CAS  Google Scholar 

  58. Power JD, Fair DA, Schlaggar BL et al (2010) The development of human functional brain networks. Neuron 67:735–748

    Article  PubMed  CAS  Google Scholar 

  59. Prakash S, Golwala P (2011) Phantom headache: pain-memory-emotion hypothesis for chronic daily headache? J Headache Pain 12:281–286

    Article  PubMed  Google Scholar 

  60. Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288:1769–1772

    Article  PubMed  CAS  Google Scholar 

  61. Raichle ME (2010) Two views of brain function. Trends Cogn Sci 14:180–190

    Article  PubMed  Google Scholar 

  62. Raichle ME, Gusnard DA (2005) Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol 493:167–176

    Article  PubMed  Google Scholar 

  63. Raichle ME, Macleod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  PubMed  CAS  Google Scholar 

  64. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090; discussion 1097–1089

    Article  PubMed  Google Scholar 

  65. Riedl V, Valet M, Woller A et al (2011) Repeated pain induces adaptations of intrinsic brain activity to reflect past and predict future pain. Neuroimage 57:206–213

    Article  PubMed  Google Scholar 

  66. Rocca MA, Valsasina P, Absinta M et al (2010) Central nervous system dysregulation extends beyond the pain-matrix network in cluster headache. Cephalalgia 30:1383–1391

    Article  PubMed  Google Scholar 

  67. Sakoglu U, Upadhyay J, Chin CL et al (2011) Paradigm shift in translational neuroimaging of CNS disorders. Biochem Pharmacol 81:1374–1387

    Article  PubMed  CAS  Google Scholar 

  68. Salvador R, Martinez A, Pomarol-Clotet E et al (2008) A simple view of the brain through a frequency-specific functional connectivity measure. Neuroimage 39:279–289

    Article  PubMed  CAS  Google Scholar 

  69. Schneider F, Bermpohl F, Heinzel A et al (2008) The resting brain and our self: self-relatedness modulates resting state neural activity in cortical midline structures. Neuroscience 157:120–131

    Article  PubMed  CAS  Google Scholar 

  70. Schweinhardt P, Bushnell MC (2010) Pain imaging in health and disease – how far have we come? J Clin Invest 120:3788–3797

    Article  PubMed  CAS  Google Scholar 

  71. Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    Article  PubMed  CAS  Google Scholar 

  72. Seifert F, Bschorer K, De Col R et al (2009) Medial prefrontal cortex activity is predictive for hyperalgesia and pharmacological antihyperalgesia. J Neurosci 29:6167–6175

    Article  PubMed  CAS  Google Scholar 

  73. Singer T, Seymour B, O’Doherty J et al (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162

    Article  PubMed  CAS  Google Scholar 

  74. Sokoloff L, Mangold R, Wechsler RL et al (1955) The effect of mental arithmetic on cerebral circulation and metabolism. J Clin Invest 34:1101–1108

    Article  PubMed  CAS  Google Scholar 

  75. Spreng RN, Grady CL (2010) Patterns of brain activity supporting autobiographical memory, prospection, and theory-of-mind and their relationship to the default mode network. J Cogn Neurosci 22:1112–1123

    Article  PubMed  Google Scholar 

  76. Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510

    Article  PubMed  Google Scholar 

  77. Subic-Wrana C, Beutel ME, Knebel A et al (2010) Theory of mind and emotional awareness deficits in patients with somatoform disorders. Psychosom Med 72:404–411

    Article  PubMed  Google Scholar 

  78. Valet M, Sprenger T, Tolle TR (2010) Studies on cerebral processing of pain using functional imaging: somatosensory, emotional, cognitive, autonomic and motor aspects. Schmerz 24:114–121

    Article  PubMed  CAS  Google Scholar 

  79. Vincent JL, Patel GH, Fox MD et al (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86

    Article  PubMed  CAS  Google Scholar 

  80. Weissman-Fogel I, Moayedi M, Tenenbaum HC et al (2011) Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks. Pain 152:384–396

    Article  PubMed  CAS  Google Scholar 

  81. Wiech K, Tracey I (2009) The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47:987–994

    Article  PubMed  Google Scholar 

  82. Zubieta JK, Smith YR, Bueller JA et al (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293:311–315

    Article  PubMed  CAS  Google Scholar 

  83. Zyloney CE, Jensen K, Polich G et al (2010) Imaging the functional connectivity of the Periaqueductal Gray during genuine and sham electroacupuncture treatment. Mol Pain 6:80

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Noll-Hussong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otti, A., Noll-Hussong, M. Intrinsische Hirnaktivität bei Schmerzen. Schmerz 25, 501–507 (2011). https://doi.org/10.1007/s00482-011-1097-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-011-1097-1

Schlüsselwörter

Keywords

Navigation