Der Schmerz

, Volume 25, Issue 2, pp 199–206 | Cite as

Veränderte Beckenmuskelaktivierung bei Patienten mit chronischem nichtspezifischem Rückenschmerz

  • D. NötzelEmail author
  • C. Puta
  • H. Wagner
  • C. Anders
  • A. Petrovich
  • H.H.W. Gabriel



Ziel der Studie war die Untersuchung der posturalen Kontrolle während externer über die Füße eingeleiteter Störungen bei Patienten mit chronischem nichtspezifischem Rückenschmerz (CNRS). Zudem wurde der Einfluss der visuellen Information (Augen offen vs. Augen geschlossen) auf die posturale Kontrolle untersucht.

Material und Methoden

Es wurden 8 Patienten mit CNRS (Alter: 40±12 Jahre; Body Mass Index, BMI: 23±2 kg/m2) ohne degenerative Bandscheibenerkrankung der Wirbelsäule (Befund der Magnetresonanztomografie) und 12 gesunde Vergleichspersonen (Alter: 28±7 Jahre; BMI: 21±3 kg/m2) untersucht. Mittels Oberflächenelektromyografie (OEMG) wurde die posturale Kontrolle bei 5 Rumpf- und 5 Beinmuskeln sowie einem Beckenmuskel bei distalen lateralen Störungen analysiert.


Gesunde (Mittelwert ± Standardabweichung: 96,42±64,77 µV) zeigten im Vergleich zu Patienten mit CNRS (56,29±39,63 µV) eine signifikant (F=6,00; p<0,05) größere erste Maximalamplitude der muskulären Reflexantwort des M. gluteus medius während externer Störungen im aufrechten Stand. Beide Gruppen zeigten für ausgewählte Beinmuskeln ein signifikant größeres Integral der ersten Reflexantwort bei geschlossenen Augen im Vergleich zu offenen Augen.


Patienten mit CNRS zeigen eine veränderte reflektorische Antwort des M. gluteus medius, welche mit einer verminderten Beckenstabilisierung einhergehen könnte.


Rückenschmerz Posturale Kontrolle Visuelle Information Beckenmuskulatur Elektromyografie 

Altered hip muscle activation in patients with chronic non-specific low back pain



The aim of this study was to examine postural control in patients with chronic non-specific low back pain (CNRS). Furthermore the influence of visual information (eyes open versus eyes closed) was analyzed.

Material and methods

A total of 8 patients with CNRS and 12 healthy control subjects were examined. Surface electromyography (SEMG) recordings were made from 5 trunk and 5 lower limb muscles as well as one hip muscle during application of distal lateral perturbation.


Healthy controls (mean ± standard deviation: 96.42±64.77 µV) showed a significantly higher maximum amplitude of the gluteus medius muscle in comparison to patients with CNRS (56.29±39.63 µV). Furthermore activation of several lower limb muscles was found to be dependent on visual information.


Patients showed an altered reflex response of the gluteus medius muscle which could be associated with reduced hip stability.


Low back pain Postural balance Visual information Hip muscle Electromyography 



Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.


  1. 1.
    Allum JH, Pfaltz CR (1985) Visual and vestibular contributions to pitch sway stabilization in the ankle muscles of normals and patients with bilateral peripheral vestibular deficits. Exp Brain Res 58:82–94PubMedCrossRefGoogle Scholar
  2. 2.
    Aruin AS, Latash ML (1995) The role of motor action in anticipatory postural adjustments studied with self-induced and externally triggered perturbations. Exp Brain Res 106:291–300PubMedCrossRefGoogle Scholar
  3. 3.
    Benoit DL, Lamontagne M, Cerulli G et al (2003) The clinical significance of electromyography normalisation techniques in subjects with anterior cruciate ligament injury during treadmill walking. Gait Posture 18:56–63PubMedCrossRefGoogle Scholar
  4. 4.
    Creath R, Kiemel T, Horak F et al (2005) A unified view of quiet and perturbed stance: simultaneous co-existing excitable modes. Neurosci Lett 377:75–80PubMedCrossRefGoogle Scholar
  5. 5.
    Edwards A (1946) Body sway and vision. J Exp Psychol 36:526–536PubMedCrossRefGoogle Scholar
  6. 6.
    Henry SM, Fung J, Horak FB (1998) EMG responses to maintain stance during multidirectional surface translations. J Neurophysiol 80:1939–1950PubMedGoogle Scholar
  7. 7.
    Hermens HJ, Freriks B, Merletti R et al (1999) European Recommendations for Surface ElectroMyoGraphy. Results of the SENIAM project. Roessingh Research and Development. Enschede, the NetherlandsGoogle Scholar
  8. 8.
    Hodges PW, Richardson CA (1996) Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine 21:2640–2650PubMedCrossRefGoogle Scholar
  9. 9.
    Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 55:1369–1381PubMedGoogle Scholar
  10. 10.
    Knutson LM, Soderberg GL, Ballantyne BT et al (1994) A study of various normalization procedures for within day electromyographic data. J Electromyogr Kinesiol 4:47–59PubMedCrossRefGoogle Scholar
  11. 11.
    Krotkiewski M, Björntorp P, Sjöström L et al (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 72:1150–1162PubMedCrossRefGoogle Scholar
  12. 12.
    Lehman GJ (2002) Clinical considerations in the use of surface electromyography: Three experimental studies. J Manipulative Physiol Ther 25:293–299PubMedCrossRefGoogle Scholar
  13. 13.
    Leinonen V, Airaksinen M, Taimela S et al (2007) Low back pain suppresses preparatory and triggered upper-limb activation after sudden upper-limb loading. Spine 32:E150–E155PubMedCrossRefGoogle Scholar
  14. 14.
    Leinonen V, Kankaanpaa M, Hanninen O et al (2002) Paraspinal muscle responses during sudden upper limb loading. Eur J Appl Physiol 88:42–49PubMedCrossRefGoogle Scholar
  15. 15.
    Magnusson ML, Aleksiev A, Wilder DG et al (1996) European Spine Society – the AcroMed Prize for Spinal Research 1995. Unexpected load and asymmetric posture as etiologic factors in low back pain. Eur Spine J 5:23–35PubMedCrossRefGoogle Scholar
  16. 16.
    Marras WS, Davis KG (2001) A non-MVC EMG normalization technique for the trunk musculature: Part 1. Method development. J Electromyogr Kinesiol 11:1–9PubMedCrossRefGoogle Scholar
  17. 17.
    Marras WS, Davis KG, Maronitis AB (2001) A non-MVC EMG normalization technique for the trunk musculature: Part 2. Validation and use to predict spinal loads. J Electromyogr Kinesiol 11:11–18PubMedCrossRefGoogle Scholar
  18. 18.
    Marras WS, Rangarajulu SL, Lavender SA (1987) Trunk loading and expectation. Ergonomics 30:551–562PubMedCrossRefGoogle Scholar
  19. 19.
    Massion J (1994) Postural control system. Curr Opin Neurobiol 4:877–887PubMedCrossRefGoogle Scholar
  20. 20.
    Mcnair PJ, Depledge J, Brettkelly M et al (1996) Verbal encouragement: effects on maximum effort voluntary muscle action. Br J Sports Med 30:243–245PubMedCrossRefGoogle Scholar
  21. 21.
    Mientjes MI, Frank JS (1999) Balance in chronic low back pain patients compared to healthy people under various conditions in upright standing. Clin Biomech (Bristol, Avon) 14:710–716Google Scholar
  22. 22.
    Mok NW, Brauer SG, Hodges PW (2004) Hip strategy for balance control in quiet standing is reduced in people with low back pain. Spine 29:107–112CrossRefGoogle Scholar
  23. 23.
    Müller O, Günther M, Krauss I et al (2004) Physikalische Charakterisierung des Therapiegerätes Posturomed als Meßgerät – Vorstellung eines Verfahrens zur Quantifizierung des Balancevermögens. Biomed Tech (Berl) 49:56–60Google Scholar
  24. 24.
    Nashner LM (1977) Fixed patterns of rapid postural responses among leg muscles during stance. Exp Brain Res 30:13–24PubMedCrossRefGoogle Scholar
  25. 25.
    Nelson-Wong E, Gregory DE, Winter DA et al (2008) Gluteus medius muscle activation patterns as a predictor of low back pain during standing. Clin Biomech (Bristol, Avon) 23:545–553Google Scholar
  26. 26.
    Newcomer KL, Jacobson TD, Gabriel DA et al (2002) Muscle activation patterns in subjects with and without low back pain. Arch Phys Med Rehabil 83:816–821PubMedCrossRefGoogle Scholar
  27. 27.
    Ng JK, Kippers V, Richardson CA (1998) Muscle fibre orientation of abdominal muscles and suggested surface EMG electrode positions. Electromyogr Clin Neurophysiol 38:51–58PubMedGoogle Scholar
  28. 28.
    Nordander C, Willner J, Hansson GA et al (2003) Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and BMI, on the EMG amplitude. Eur J Appl Physiol 89:514–519PubMedCrossRefGoogle Scholar
  29. 29.
    Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118PubMedGoogle Scholar
  30. 30.
    Pfingsten M (2009) Chronischer Ruckenschmerz – Interdisziplinare Diagnostik und Therapie. Anasthesiol Intensivmed Notfallmed Schmerzther 44:40–45; quiz 46PubMedCrossRefGoogle Scholar
  31. 31.
    Radebold A, Cholewicki J, Panjabi MM et al (2000) Muscle response pattern to sudden trunk loading in healthy individuals and in patients with chronic low back pain. Spine 25:947–954PubMedCrossRefGoogle Scholar
  32. 32.
    Scott J, Huskisson EC (1976) Graphic representation of pain. Pain 2:175–184PubMedCrossRefGoogle Scholar
  33. 33.
    Timmann D, Belting C, Schwarz M et al (1994) Influence of visual and somatosensory input on leg EMG responses in dynamic posturography in normals. Electroencephalogr Clin Neurophysiol 93:7–14PubMedCrossRefGoogle Scholar
  34. 34.
    Wilder DG, Aleksiev AR, Magnusson ML et al (1996) Muscular response to sudden load. A tool to evaluate fatigue and rehabilitation. Spine 21:2628–2639PubMedCrossRefGoogle Scholar
  35. 35.
    Winter DA, Prince F, Frank JS et al (1996) Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol 75:2334–2343PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. Nötzel
    • 1
    Email author
  • C. Puta
    • 1
  • H. Wagner
    • 2
  • C. Anders
    • 3
  • A. Petrovich
    • 4
  • H.H.W. Gabriel
    • 1
  1. 1.Institut für Sportwissenschaft, Lehrstuhl für SportmedizinFriedrich-Schiller-Universität JenaJenaDeutschland
  2. 2.Institut für Sportwissenschaft, Arbeitsbereich für BewegungswissenschaftWestfälische-Wilhelms-Universität MünsterMünsterDeutschland
  3. 3.Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Funktionsbereich Motorik, Pathophysiologie und BiomechanikFriedrich-Schiller-Universität JenaJenaDeutschland
  4. 4.Interventionelle Radiologie/NeuroradiologieZentralklinik Bad BerkaBad BerkaDeutschland

Personalised recommendations