Skip to main content
Log in

Neue Substanzen und Applikationsformen für die postoperative Schmerztherapie

New substances and applications for postoperative pain therapy

  • CME Weiterbildung • Zertifizierte Fortbildung
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Die Entstehung postoperativer Schmerzen beruht auf unterschiedlichen pathophysiologischen Mechanismen und ist abhängig von dem durchgeführten operativen Eingriff. Daher sollte eine erfolgversprechende postoperative Schmerztherapie auf einem prozedurenspezifischen, multimodalen Analgesieregime basieren. Neben der Steigerung des Patientenkomforts und der Senkung perioperativer Komplikationen stellt eine optimale postoperative Schmerztherapie mittlerweile auch ein wichtiges Qualitätsmerkmal dar, das die Auswahl des Krankenhauses durch den Patienten beeinflussen kann. In den letzten 1–2 Jahren wurden für die postoperative Schmerztherapie bekannte Substanzgruppen neu endeckt (z. B. Gabapentin und Pregabalin, i. v. Lidocain, Ketamin oder Glukokortikoide) und neue Substanzen (Coxibe, orales Oxycodon+Naloxon) oder Applikationsverfahren entwickelt. Im vorliegenden Übersichtsartikel sollen die Vor- und Nachteile dieser Substanzen bzw. Analgesieverfahren aufgearbeitet und entsprechende spezifische Anwendungsbereiche diskutiert werden.

Abstract

The onset of postoperative pain is the result of various pathophysiological mechanisms and depends on the type of surgery performed. Therefore, any adequate postoperative pain treatment requires multimodal and procedure-specific analgesia. In addition to reducing perioperative complications and improving patient comfort, optimal postoperative pain management also represents an important quality characteristic which can influence the patient in their choice of hospital. In the past 1–2 years, known groups of substances have been rediscovered for postoperative pain therapy (e.g., Gabapentin and Pregabalin, i.v. Lidocaine, Ketamine or glucocorticoids), while new substances (coxibe, oral oxycodone+naloxone) and applications have been developed. The present overview article discusses the advantages and disadvantages of these substances and analgesic methods, as well as their specific areas of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Kehlet H (2004) Effect of postoperative pain treatment on outcome-current status and future strategies. Langenbecks Arch Surg 389: 244–249

    Article  PubMed  Google Scholar 

  2. Kehlet H, Holte K (2001) Effect of postoperative analgesia on surgical outcome. Br J Anaesth 87: 62–72

    Article  PubMed  CAS  Google Scholar 

  3. Simanski C, Lefering R, Paffrath T et al. (2006) Postoperative pain relief is an important factor for the patients‘ selection of a clinic. Results of an anonymous survey. Schmerz 20: 327–333

    Article  PubMed  CAS  Google Scholar 

  4. Kehlet H, Werner M, Perkins F (1999) Balanced analgesia: what is it and what are its advantages in postoperative pain? Drugs 58: 793–797

    Article  PubMed  CAS  Google Scholar 

  5. Kehlet H, Wilmore DW (2002) Multimodal strategies to improve surgical outcome. Am J Surg 183: 630–641

    Article  PubMed  Google Scholar 

  6. Gajraj NM (2007) Pregabalin: its pharmacology and use in pain management. Anesth Analg 105: 1805–1815

    PubMed  CAS  Google Scholar 

  7. Dahl JB, Mathiesen O, Moiniche S (2004) ‚Protective premedication’: an option with gabapentin and related drugs? A review of gabapentin and pregabalin in in the treatment of post-operative pain. Acta Anaesthesiol Scand 48: 1130–1136

    Article  PubMed  CAS  Google Scholar 

  8. Ho KY, Gan TJ, Habib AS (2006) Gabapentin and postoperative pain – a systematic review of randomized controlled trials. Pain 126: 91–101

    Article  PubMed  CAS  Google Scholar 

  9. Hurley RW, Cohen SP, Williams KA et al. (2006) The analgesic effects of perioperative gabapentin on postoperative pain: a meta-analysis. Reg Anesth Pain Med 31: 237–247

    Article  PubMed  CAS  Google Scholar 

  10. Seib RK, Paul JE (2006) Preoperative gabapentin for postoperative analgesia: a meta-analysis. Can J Anaesth 53: 461–469

    PubMed  Google Scholar 

  11. Tiippana EM, Hamunen K, Kontinen VK, Kalso E (2007) Do surgical patients benefit from perioperative gabapentin/pregabalin? A systematic review of efficacy and safety. Anesth Analg 104: 1545–1556

    Article  PubMed  CAS  Google Scholar 

  12. Buvanendran A, Kroin JS, Kerns JM et al. (2004) Characterization of a new animal model for evaluation of persistent postthoracotomy pain. Anesth Analg 99: 1453–1460

    Article  PubMed  Google Scholar 

  13. Field MJ, Holloman EF, McCleary S et al. (1997) Evaluation of gabapentin and S-(+)-3-isobutylgaba in a rat model of postoperative pain. J Pharmacol Exp Ther 282: 1242–1246

    PubMed  CAS  Google Scholar 

  14. Gilron I (2006) Review article: the role of anticonvulsant drugs in postoperative pain management: a bench-to-bedside perspective. Can J Anaesth 53: 562–571

    PubMed  Google Scholar 

  15. Kaneko M, Mestre C, Sanchez EH, Hammond DL (2000) Intrathecally administered gabapentin inhibits formalin-evoked nociception and the expression of Fos-like immunoreactivity in the spinal cord of the rat. J Pharmacol Exp Ther 292: 743–751

    PubMed  CAS  Google Scholar 

  16. Kavoussi R (2006) Pregabalin: from molecule to medicine. Eur Neuropsychopharmacol (Suppl 2) 16: S128–S133

    Google Scholar 

  17. Turan A, Kaya G, Karamanlioglu B et al. (2006) Effect of oral gabapentin on postoperative epidural analgesia. Br J Anaesth 96: 242–246

    Article  PubMed  CAS  Google Scholar 

  18. Dierking G, Duedahl TH, Rasmussen ML et al. (2004) Effects of gabapentin on postoperative morphine consumption and pain after abdominal hysterectomy: a randomized, double-blind trial. Acta Anaesthesiol Scand 48: 322–327

    Article  PubMed  CAS  Google Scholar 

  19. Fassoulaki A, Patris K, Sarantopoulos C, Hogan Q (2002) The analgesic effect of gabapentin and mexiletine after breast surgery for cancer. Anesth Analg 95: 985–991

    Article  PubMed  CAS  Google Scholar 

  20. Fassoulaki A, Stamatakis E, Petropoulos G et al. (2006) Gabapentin attenuates late but not acute pain after abdominal hysterectomy. Eur J Anaesthesiol 23: 136–141

    Article  PubMed  CAS  Google Scholar 

  21. Kehlet H (2006) Perioperative analgesia to prevent chronic postmastectomy pain. Anesth Analg 103: 494; author reply 494–495

    Article  PubMed  Google Scholar 

  22. Solak O, Metin M, Esme H et al. (2007) Effectiveness of gabapentin in the treatment of chronic post-thoracotomy pain. Eur J Cardiothorac Surg 32: 9–12

    Article  PubMed  Google Scholar 

  23. Menigaux C, Adam F, Guignard B et al. (2005) Preoperative gabapentin decreases anxiety and improves early functional recovery from knee surgery. Anesth Analg 100: 1394–1399; table of contents

    Article  PubMed  CAS  Google Scholar 

  24. Hill CM, Balkenohl M, Thomas DW et al. (2001) Pregabalin in patients with postoperative dental pain. Eur J Pain 5: 119–124

    Article  PubMed  CAS  Google Scholar 

  25. Reuben SS, Ekman EF, Raghunathan K et al. (2006) The effect of cyclooxygenase-2 inhibition on acute and chronic donor-site pain after spinal-fusion surgery. Reg Anesth Pain Med 31: 6–13

    Article  PubMed  CAS  Google Scholar 

  26. Rose MA, Kam PCA (2002) Gabapentin: pharmacology and its use in pain management. Anaesthesia 57: 451–462

    Article  PubMed  CAS  Google Scholar 

  27. Pandey CK, Navkar DV, Giri PJ et al. (2005) Evaluation of the optimal preemptive dose of gabapentin for postoperative pain relief after lumbar diskectomy: a randomized, double-blind, placebo-controlled study. J Neurosurg Anesthesiol 17: 65–68

    Article  PubMed  Google Scholar 

  28. Bisgaard T, Klarskov B, Kehlet H, Rosenberg J (2003) Preoperative dexamethasone improves surgical outcome after laparoscopic cholecystectomy: a randomized double-blind placebo-controlled trial. Ann Surg 238: 651–660

    Article  PubMed  Google Scholar 

  29. Karst M, Kegel T, Lukas A (2003) Effect of celecoxib and dexamethasone on postoperative pain after lumbar disc surgery. Neurosurgery 53: 336–337

    Google Scholar 

  30. Afman CE, Welge JA, Steward DL (2006) Steroids for post-tonsillectomy pain reduction: meta-analysis of randomized controlled trials. Otolaryngol Head Neck Surg 134: 181–186

    Article  PubMed  Google Scholar 

  31. Romundstad L, Breivik H, Niemi G (2004) Methylprednisolone intravenously 1 day after surgery has sustained analgesic and opioid-sparing effects. Acta Anaesthesiol Scand 48: 1223–1231

    Article  PubMed  CAS  Google Scholar 

  32. Romundstad L, Breivik H, Roald H (2006) Methylprednisolone reduces pain, emesis, and fatigue after breast augmentation surgery: a single-dose, randomized, parallel-group study with methylprednisolone 125 mg, parecoxib 40 mg, and placebo. Anesth Analg 102: 418–425

    Article  PubMed  CAS  Google Scholar 

  33. Fujii Y, Nakayama M (2007) Reduction of postoperative nausea and vomiting and analgesic requirement with dexamethasone in women undergoing general anesthesia for mastectomy. Breast J 13: 564–567

    Article  PubMed  CAS  Google Scholar 

  34. Kjetil H, Sem TK, Ellen S, Johan R (2007) The prolonged postoperative analgesic effect when dexamethasone is added to a nonsteroidal antiinflammatory drug (Rofecoxib) before breast surgery. Anesth Analg 105: 481–486

    Article  PubMed  CAS  Google Scholar 

  35. Lee Y, Lai H-Y, Lin P-C et al. (2004) A dose ranging study of dexamethasone for preventing patient-controlled analgesia-related nausea and vomiting: a comparison of droperidol with saline. Anesth Analg 98: 1066–1071

    Article  PubMed  CAS  Google Scholar 

  36. Sauerland S, Nagelschmidt M, Mallmann P, Neugebauer EA (2000) Risks and benefits of preoperative high dose methylprednisolone in surgical patients: a systematic review. Drug Saf 23: 449–461

    Article  PubMed  CAS  Google Scholar 

  37. Salerno A, Hermann R (2006) Efficacy and safety of steroid use for postoperative pain relief. Update and review of the medical literature. J Bone Joint Surg Am 88: 1361–1372

    Article  PubMed  Google Scholar 

  38. Romundstad L, Stubhaug A (2007) Glucocorticoids for acute and persistent postoperative neuropathic pain. Anesthesiology 107: 371–373

    Article  PubMed  Google Scholar 

  39. Dougherty PM, Palacek J, Paleckova V et al. (1992) The role of NMDA and non-NMDA excitatory amino acid receptors in the excitation of primate spinothalamic tract neurons by mechanical, chemical, thermal, and electrical stimuli. J Neurosci 12: 3025–3041

    PubMed  CAS  Google Scholar 

  40. Pogatzki EM, Niemeier JS, Sorkin LS, Brennan TJ (2003) Spinal glutamate receptor antagonists differentiate primary and secondary mechanical hyperalgesia caused by incision. Pain 105: 97–107

    Article  PubMed  CAS  Google Scholar 

  41. Pogatzki EM, Zahn PK, Brennan TJ (2000) Effect of pretreatment with intrathecal excitatory amino acid receptor antagonists on the development of pain behavior caused by plantar incision. Anesthesiology 93: 489–496

    Article  PubMed  CAS  Google Scholar 

  42. Zahn PK, Pogatzki-Zahn EM, Brennan TJ (2005) Spinal administration of MK-801 and NBQX demonstrates NMDA-independent dorsal horn sensitization in incisional pain. Pain 114: 499–510

    Article  PubMed  CAS  Google Scholar 

  43. Zahn PK, Brennan TJ (1998) Lack of effect of intrathecally administered N-methyl-D-aspartate receptor antagonists in a rat model for postoperative pain. Anesthesiology 88: 143–156

    Article  PubMed  CAS  Google Scholar 

  44. De Kock M, Lavand’homme P, Waterloos H (2001) ‚Balanced analgesia‘ in the perioperative period: Is there a place for ketamine? Pain 92: 373–380

    Article  Google Scholar 

  45. Schmid RL, Sandler AN, Katz J (1999) Use and efficacy of low-dose ketamine in the management of acute postoperative pain: a review of current techniques and outcomes. Pain 82: 111–125

    Article  PubMed  CAS  Google Scholar 

  46. Elia N, Tramer MR (2005) Ketamine and postoperative pain–a quantitative systematic review of randomised trials. Pain 113: 61–70

    Article  PubMed  CAS  Google Scholar 

  47. Vranken JH, Troost D, Haan P de et al. (2006) Severe toxic damage to the rabbit spinal cord after intrathecal administration of preservative-free S(+)-ketamine. Anesthesiology 105: 813–818

    Article  PubMed  CAS  Google Scholar 

  48. Errando CL, Sifre C, Moliner S et al. (1999) Subarachnoid ketamine in swine – pathological findings after repeated doses: acute toxicity study. Reg Anesth Pain Med 24: 146–152

    Article  PubMed  CAS  Google Scholar 

  49. Becke K, Höhne C, Jöhr M, Reich A (2007) Stellungnahme Arbeitskreis Kinderanästhesie: S(+)- Ketamin als Supplement zur Kaudalanästhesie im Kindesalter. Anästh Intensivmed 48: 299

    Google Scholar 

  50. Subramaniam K, Subramaniam B, Steinbrook RA (2004) Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg 99: 482–495; table of contents

    Article  PubMed  CAS  Google Scholar 

  51. Vandermeulen E (2006) Systemic analgesia and co-analgesia. Acta Anaesthesiol Belg 57: 113–120

    PubMed  CAS  Google Scholar 

  52. Duedahl TH, Romsing J, Moiniche S, Dahl JB (2006) A qualtitative systematic review of peri-operative detromethorphan in post-operative pain. Acta Anaesthesiol Scand 50: 1–13

    Article  PubMed  CAS  Google Scholar 

  53. Angst MS, Clark JD (2006) Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 104: 570–587

    Article  PubMed  CAS  Google Scholar 

  54. Carroll IR, Angst MS, Clark JD (2004) Management of perioperative pain in patients chronically consuming opioids. Reg Anesth Pain Med 29: 576–591

    Article  PubMed  Google Scholar 

  55. Koppert W (2005) Opioid-induced analgesia and hyperalgesia. Schmerz 19: 386–390, 392–394

    Article  PubMed  CAS  Google Scholar 

  56. Laulin JP, Maurette P, Corcuff JB et al. (2002) The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance. Anesth Analg 94: 1263–1269

    Article  PubMed  CAS  Google Scholar 

  57. Koppert W, Sittl R, Scheuber K et al. (2003) Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology 99: 152–159

    Article  PubMed  CAS  Google Scholar 

  58. Koppert W (2004) Opioid-induced hyperalgesia. Pathophysiology and clinical relevance. Anaesthesist 53: 455–466

    Article  PubMed  CAS  Google Scholar 

  59. Hansen EG, Duedahl TH, Romsing J et al. (2005) Intra-operative remifentanil might influence pain levels in the immediate post-operative period after major abdominal surgery. Acta Anaesthesiol Scand 49: 1464–1470

    PubMed  CAS  Google Scholar 

  60. Weinbroum AA (2003) A single small dose of postoperative ketamine provides rapid and sustained improvement in morphine analgesia in the presence of morphine-resistant pain. Anesth Analg 96: 789–795

    Article  PubMed  CAS  Google Scholar 

  61. Kehlet H, Jensen TS, Woolf CJ (2006) Persistent postsurgical pain: risk factors and prevention. Lancet 367: 1618–1625

    Article  PubMed  Google Scholar 

  62. Eisenach JC (2006) Preventing chronic pain after surgery: who, how, and when? Reg Anesth Pain Med 31: 1–3

    Article  PubMed  Google Scholar 

  63. Eisenach JC (2006) Treating and preventing chronic pain: a view from the spinal cord–Bonica Lecture, ASRA Annual Meeting, 2005. Reg Anesth Pain Med 31: 146–151

    Article  PubMed  Google Scholar 

  64. McCartney CJ, Sinha A, Katz J (2004) A qualitative systematic review of the role of N-methyl-D-aspartate receptor antagonists in preventive analgesia. Anesth Analg 98: 1385–1400; table of contents

    Article  PubMed  CAS  Google Scholar 

  65. Lavand’homme P (2006) Perioperative pain. Curr Opin Anaesthesiol 19: 556–561

    Article  Google Scholar 

  66. Lavand’homme P, De Kock M, Waterloos H (2005) Intraoperative epidural analgesia combined with ketamine provides effective preventive analgesia in patients undergoing major digestive surgery. Anesthesiology 103: 813–820

    Article  Google Scholar 

  67. Sinnott CJ, Garfield JM, Strichartz GR (1999) Differential efficacy of intravenous lidocaine in alleviating ipsilateral versus contralateral neuropathic pain in the rat. Pain 80: 521–531

    Article  PubMed  CAS  Google Scholar 

  68. Mao J, Chen LL (2000) Systemic lidocaine for neuropathic pain relief. Pain 87: 7–17

    Article  PubMed  CAS  Google Scholar 

  69. Omana-Zapata I, Khabbaz MA, Hunter JC et al. (1997) Tetrodotoxin inhibits neuropathic ectopic activity in neuromas, dorsal root ganglia and dorsal horn neurons. Pain 72: 41–49

    Article  PubMed  CAS  Google Scholar 

  70. Devor M, Wall PD, Catalan N (1992) Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain 48: 261–268

    Article  PubMed  CAS  Google Scholar 

  71. Lai J, Hunter JC, Porreca F (2003) The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol 13: 291–297

    Article  PubMed  CAS  Google Scholar 

  72. Gold MS, Weinreich D, Kim CS et al. (2003) Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci 23: 158–166

    PubMed  CAS  Google Scholar 

  73. Tremont-Lukats IW, Challapalli V, McNicol ED et al. (2005) Systemic administration of local anesthetics to relieve neuropathic pain: a systematic review and Meta-analysis. Anesth Analg 101: 1738–1749

    Article  PubMed  CAS  Google Scholar 

  74. Challapalli V, Tremont-Lukats IW, McNicol ED et al. (2005) Systemic administration of local anesthetic agents to relieve neuropathic pain. Cochrane Database Syst Rev 4: CD003345

    PubMed  Google Scholar 

  75. Cassuto J, Wallin G, Hogstrom S et al. (1985) Inhibition of postoperative pain by continuous low-dose intravenous infusion of lidocaine. Anesth Analg 64: 971–974

    Article  PubMed  CAS  Google Scholar 

  76. Groudine SB, Fisher HA, Kaufman RP Jr et al. (1998) Intravenous lidocaine speeds the return of bowel function, decreases postoperative pain, and shortens hospital stay in patients undergoing radical retropubic prostatectomy. Anesth Analg 86: 235–239

    Article  PubMed  CAS  Google Scholar 

  77. Koppert W, Weigand M, Neumann F et al. (2004) Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anesth Analg 98: 1050–1055; table of contents

    Article  PubMed  CAS  Google Scholar 

  78. Herroeder S, Pecher S, Schönherr ME et al. (2007) Systemic lidocaine shortens length of hospital stay after colorectal surgery. A double-blinded, randomized, placebo-controlled trial. Ann Surg 246: 192–200

    Article  PubMed  Google Scholar 

  79. Brack A, Bottiger BW, Schafer M (2006) New aspects in postoperative pain therapy. Anasthesiol Intensivmed Notfallmed Schmerzther 41: 184–192

    Article  PubMed  CAS  Google Scholar 

  80. Schäfer M (2008) Postoperative Schmerztherapie – Behandlungsgrundsätze systemischer Schmerztherapie. In: Pogaztki-Zahn EM, Zahn PK (Hrsg) Postoperative Schmerztherapie – Pathophysiologie, Pharmakologie und Therapie. Thieme, Stuttgart, S 70–85

  81. Legeby M, Sandelin K, Wickman M, Olofsson C (2005) Analgesic efficacy of diclofenac in combination with morphine and paracetamol after mastectomy and immediate breast reconstruction. Acta Anaesthesiol Scand 49: 1360–1366

    Article  PubMed  CAS  Google Scholar 

  82. Elia N, Lysakowski C, Tramer MR (2005) Does multimodal analgesia with acetaminophen, nonsteroidal antiinflammatory drugs, or selective cyclooxygenase-2 inhibitors and patient-controlled analgesia morphine offer advantages over morphine alone? Meta-analyses of randomized trials. Anesthesiology 103: 1296–1304

    Article  PubMed  CAS  Google Scholar 

  83. Marret E, Kurdi O, Zufferey P, Bonnet F (2005) Effects of nonsteroidal antiinflammatory drugs on patient-controlled analgesia morphine side effects: meta-analysis of randomized controlled trials. Anesthesiology 102: 1249–1260

    Article  PubMed  CAS  Google Scholar 

  84. Romsing J, Moiniche S, Mathiesen O, Dahl JB (2005) Reduction of opioid-related adverse events using opioid-sparing analgesia with COX-2 inhibitors lacks documentation: a systematic review. Acta Anaesthesiol Scand 49: 133–142

    Article  PubMed  CAS  Google Scholar 

  85. Romsing J, Moiniche S (2004) A systematic review of COX-2 inhibitors compared with traditional NSAIDs, or different COX-2 inhibitors for post-operative pain. Acta Anaesthesiol Scand 48: 525–546

    Article  PubMed  CAS  Google Scholar 

  86. Garcia Rodriguez LA, Barreales Tolosa L (2007) Risk of upper gastrointestinal complications among users of traditional NSAID and Coxibs in the general population. Gastroenterology 132: 790–794

    Article  CAS  Google Scholar 

  87. Peura DA, Goldkind L (2005) Balancing the gastrointestinal benefits and risks of nonselective NSAID. Arthritis Res Ther 7: 7–13

    Article  CAS  Google Scholar 

  88. Nau C, Schüttler J (2008) Klinische Pharmakologie analgetischer Substanzen. In: Pogatzki-Zahn EM, Zahn PK (Hrsg) Postoperative Schmerztherapie – Pathophysiologie, Pharmakologie und Therapie. Thieme, Stuttgart, S 42–69

  89. Laine L (2001) Approaches to nonsteroidal anti-inflammatory drug use in the high-risk patient. Gastroenterology 120: 594–606

    Article  PubMed  CAS  Google Scholar 

  90. Mamdani M, Rochon PA, Juurlink DN (2002) Observational study of upper gastrointestinal haemorrhage in elderly patients given selective cyclo-oxygenase-2 inhibitors or conventional non-steroidal anti-inflammatory drugs. BMJ 325: 624

    Article  PubMed  CAS  Google Scholar 

  91. Warner TD, Mitchell JA (2008) COX-2 selectivity alone does not define the cardiovascular risks associated with non-steroidal anti-inflammatory drugs. Lancet 371: 270–273

    Article  PubMed  CAS  Google Scholar 

  92. Whelton A (2006) Clinical implications of nonopioid analgesia for relief of mild-to-moderate pain in patients with or at risk for cardiovascular disease. Am J Cardiol 97: 3E–9E

    Article  Google Scholar 

  93. Lee A, Cooper MC, Craig JC et al. (2004) Effects of nonsteroidal anti-inflammatory drugs on postoperative renal function in adults with normal renal function. Cochrane Database Syst Rev 2: CD002765

    PubMed  Google Scholar 

  94. Hennekens CH, Borzak S (2008) Cyclooxygenase-2 inhibitors and most traditional nonsteroidal anti-inflammatory drugs cause similar moderately increased risks of cardiovascular disease. J Cardiovasc Pharmacol Ther 13: 41–50

    Article  PubMed  CAS  Google Scholar 

  95. Ott E, Nussmeier NA, Duke PC et al. (2003) Efficacy and safety of the cyclooxygenase 2 inhibitors parecoxib and valdecoxib in patients undergoing coronary artery bypass surgery. J Thorac Cardiovasc Surg 125: 1481–1492

    Article  PubMed  CAS  Google Scholar 

  96. Nussmeier NA, Whelton AA, Brown MT et al. (2005) Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N Engl J Med 352: 1081–1091

    Article  PubMed  CAS  Google Scholar 

  97. Nussmeier NA, Whelton AA, Brown MT et al. (2006) Safety and efficacy of the cyclooxygenase-2 inhibitors parecoxib and valdecoxib after noncardiac surgery. Anesthesiology 104: 518–526

    Article  PubMed  CAS  Google Scholar 

  98. Schug SA, Camu F, Joshi GP, Pan S (2006) Cardiovascular safety of cyclo-oxygenase selective inhibitor parecoxib sodium: review of pooled data from surgical studies. Eur J Anaesthesiol 23: A-849

    Google Scholar 

  99. Joshi GP, Gertler R, Fricker R (2007) Cardiovascular thromboembolic adverse effects associated with cyclooxygenase-2 selective inhibitors and nonselective antiinflammatory drugs. Anesth Analg 105: 1793–1804; table of contents

    PubMed  CAS  Google Scholar 

  100. Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3: 115–124

    Article  PubMed  CAS  Google Scholar 

  101. Grond S, Hall J, Spacek A et al. (2007) Iontophoretic transdermal system using fentanyl compared with patient-controlled intravenous analgesia using morphine for postoperative pain management. Br J Anaesth 98: 806–815

    Article  PubMed  CAS  Google Scholar 

  102. Viscusi ER, Reynolds L, Chung F et al. (2004) Patient-controlled transdermal fentanyl hydrochloride vs intravenous morphine pump for postoperative pain: a randomized controlled trial. JAMA 291: 1333–1341

    Article  PubMed  CAS  Google Scholar 

  103. Viscusi ER, Siccardi M, Damaraju CV et al. (2007) The safety and efficacy of fentanyl iontophoretic transdermal system compared with morphine intravenous patient-controlled analgesia for postoperative pain management: an analysis of pooled data from three randomized, active-controlled clinical studies. Anesth Analg 105: 1428–1436; table of contents

    Article  PubMed  CAS  Google Scholar 

  104. Viscusi ER, Reynolds L, Tait S et al. (2006) An iontophoretic fentanyl patient-activated analgesic delivery system for postoperative pain: a double-blind, placebo-controlled trial. Anesth Analg 102: 188–194

    Article  PubMed  CAS  Google Scholar 

  105. Power I (2007) Fentanyl HCl iontophoretic transdermal system (ITS): clinical application of iontophoretic technology in the management of acute postoperative pain. Br J Anaesth 98: 4–11

    Article  PubMed  CAS  Google Scholar 

  106. Panchal SJ, Damaraju CV, Nelson WW et al. (2007) System-related events and analgesic gaps during postoperative pain management with the fentanyl iontophoretic transdermal system and morphine intravenous patient-controlled analgesia. Anesth Analg 105: 1437–1441; table of contents

    PubMed  CAS  Google Scholar 

  107. Rawal N, Langford RM (2007) Current practices for postoperative pain management in Europe and the potential role of the fentanyl HCl iontophoretic transdermal system. Eur J Anaesthesiol 24: 299–308

    Article  PubMed  CAS  Google Scholar 

  108. Bisgaard T (2006) Analgesic treatment after laparoscopic cholecystectomy: a critical assessment of the evidence. Anesthesiology 104: 835–846

    Article  PubMed  Google Scholar 

  109. Bisgaard T, Klarskov B, Kristiansen VB et al. (1999) Multi-regional local anesthetic infiltration during laparoscopic cholecystectomy in patients receiving prophylactic multi-modal analgesia: a randomized, double-blinded, placebo-controlled study. Anesth Analg 89: 1017–1024

    Article  PubMed  CAS  Google Scholar 

  110. Liu SS, Richman JM, Thirlby RC, Wu CL (2006) Efficacy of continuous wound catheters delivering local anesthetic for postoperative analgesia: a quantitative and qualtitative systematic review of randomized controlled trials. J Am Coll Surg 203: 914–932

    Article  PubMed  Google Scholar 

  111. Lavand’homme P, Roelants F, Waterloos H, De Kock MF (2007) Postoperative analgesic effects of continuous wound infiltration with diclofenac after elective cesarean delivery. Anesthesiology 106: 1220–1225

    Article  CAS  Google Scholar 

  112. Giesa M, Jage J, Meurer A (2006) Postoperative Schmerztherapie in der Orthopädie und Unfallchirurgie. Orthopade 35: 211–222

    Article  PubMed  CAS  Google Scholar 

  113. Stiehl M (2004) [Controlled release oxycodone–a new option in the treatment of severe and very severe pain. Review of studies on neuropathic, physical activity-related and postoperative pain]. MMW Fortschr Med (Suppl 2) 146: 61–69

    Google Scholar 

  114. Pogatzki-Zahn EM, Zahn PK (2007) Systemic analgesia: an update. Anasthesiol Intensivmed Notfallmed Schmerzther 42: 22–31

    Article  PubMed  Google Scholar 

  115. Cheville A, Chen A, Oster G et al. (2001) A randomized trial controlled-release oxycodone during inpatient rehabilitation following unilateral total knee arthroplasty. J Bone Joint Surg Am 83: 572–576

    Article  PubMed  Google Scholar 

  116. Kampe S, Warm M, Kaufmann J et al. (2004) Clinical efficacy of controlled release oxycodone 20 mg administered on a 12-n dosing schedule on the management of postopeative pain after breast surgery for cancer. Curr Med Res Opin 20: 199–202

    Article  PubMed  CAS  Google Scholar 

  117. Kalso E (2005) Oxycodone. J Pain Symptom Manage (Suppl 5) 55: S47–S56

    Article  CAS  Google Scholar 

  118. Ginsberg B, Sinatra RS, Adler LJ et al. (2003) Conversion to oral controlled-release oxycodone from intravenous opioid analgesic in the postoperative setting. Pain Med 4: 31–38

    Article  PubMed  Google Scholar 

  119. Hopp M, Ruckes C, Friedman M et al. (2005) The combination of naloxone with prolonged release (pr) oxycodone is able to reduce opioid-induced constipation – results of a clinical study. Schmerz (Suppl 1): 103

  120. Müller-Lissner S, Leyendecker P, Hopp M et al. (2007) Oral prolonged release (PR) oxycodone/naloxone combination reduces opioid-induced bowel dysfunction (OIBD) in patients with severe chronic pain. Eur J Pain 11: 82

    Article  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin weist auf folgende Beziehungen hin: Beratungs- und/oder Referententätigkeit für Mundipharma, Pfizer, Janssen-Cilag, Köhler Chemie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.M. Pogatzki-Zahn.

CME-Fragebogen

CME-Fragebogen

Die antihyperalgetische Wirkung von Gabapentin und Pregabalin beruht u. a. auf einer Hemmung welcher Strukturen?

GABA-A-Rezeptoren.

GABA-B-Rezeptoren.

AMPA-Rezeptoren.

Opioidrezeptoren.

Spannungsabhängige Kalziumkanäle (Alpha-2/Delta-1-Untereinheit).

Welche Aussage über Gabapentin und Pregabalin trifft nicht zu?

Gabapentin und Pregabalin gehören zur Gruppe der Antikonvulsiva.

Beide Substanzen wirken antihyperalgetisch.

Sie führen im Rahmen einer multimodalen Analgesie zur Reduktion des Opioidverbrauchs und opioidinduzierter Nebenwirkungen.

Gabapentin und Pregabalin haben eine höhere analgetische Wirksamkeit als Opioide/Opiate.

Beide Substanzen können als Nebenwirkungen zu Müdigkeit und Schwindel führen.

Welche Aussage zu NMDA-Rezeptoren bzw. NMDA-Rezeptorantagonisten trifft nicht zu?

NMDA-Rezeptoren werden durch exzitatorische Aminosäuren (z. B. Glutamat) stiumliert.

NMDA-Rezeptoren liegen im Rückenmark und Gehirn vor.

Ketamin und Dextromethorphan sind nichtkompetitive NMDA-Rezeptorantagonisten.

Die neuroaxiale Gabe von NMDA-Rezeptorantagonisten hat eine starke Wirkung auf postoperative Schmerzen.

Die i. v. Gabe von NMDA-Rezeptorantagonisten könnte im Rahmen eines mulitmodalen Analgesieregimes bei bestimmten Indikationen wie Opioidtoleranz oder persistierender chronischer postoperativer Schmerzen eine Rolle spielen.

Welche der aufgeführten Substanzen gehört nicht zur Gruppe der selektiven oder nichtselektiven NSAIDs?

Etoricoxib.

Celecoxib.

Diclofenac.

Lidocain.

Ibuprofen.

Welche Aussage über NSAIDs oder COX-2-Hemmer ist falsch ?

Unselektive traditionelle NSAIDs wie auch selektive NSAIDs werden für die Therapie leichter bis mittelstarker postoperativer Schmerzen eingesetzt.

Alle NSAIDs haben eine ähnliche NNT von 2–4.

Bei einer Erhöhung der Dosierung über die NNT-bezogene optimale Dosierung weisen NSAIDs einen Ceiling-Effekt auf.

COX-2-Hemmer haben ein günstigeres Risiko-Nutzen-Profil im Vergleich zu unselektiven NSAIDs bezüglich gastrointestinaler Komplikationen.

Im Vergleich zu COX-2-Hemmern ist die Einnahme von unselektiven-traditionellen NSAIDs mit einem geringeren Risiko für kardiovaskuläre Komplikationen assoziiert.

Welches NSAID hat das größte Risiko für gastrointestinaler Komplikationen?

Etoricoxib.

Ibuprofen.

Diclofenac.

Indometacin.

Ketorolac.

Welche Aussage trifft für die Fentanylapplikation mittels eines iontophoretischen transdermalen Systems (ITS) nicht zu?

Das System entspricht der Pflasterapplikation von Buprenorphin oder Fentanyl.

Pro Dosis werden 40 µg Fentanyl appliziert.

Durch den Patienten können bis zu maximal 240 µg (6 Dosen von je 10-minütiger Dauer) pro Stunde, aber nicht mehr als maximal 80 Dosen innerhalb von 24 Stunden abgerufen werden.

Die Funktion des ITS wird nach einer Therapiedauer von 24 Stunden oder 80 Dosisabgaben inaktiviert.

Das ITS ist durch die „European Medicines Evaluation Agency“ (EMEA) für die Behandlung moderater bis schwerer postoperativer Schmerzen zugelassen.

Welche Aussage zur Wundinfiltration trifft zu?

Die intraoperative Wundinfiltration mit langwirksamen Lokalanästhetika wie Ropivacain oder Bupivacain ist nicht sinnvoll im Rahmen eines multimodalen Analgesiekonzeptes.

Wundkatheter führen überwiegend zu Infektionen und Wundheilungsstörungen.

Es gibt keine Dosisbegrenzungen für die Wundinfiltration von Lokalanästhetika.

Die Anwendung von langwirksamen Lokalanästhetika über Wundkatheter führt zu einer zusätzlichen Reduktion von Schmerzen und senkt den Opioidverbrauch sowie opioidinduzierte Nebenwirkungen.

Langwirksame Lokalanästhetika sollten nicht kontinuierlich über Wundkatheter verwendet werden.

Welche Substanz gehört nicht zur Gruppe der Opioide/Opiate?

Oxycodon.

Hydromorphon.

Piritramid.

Flupirtin.

Fentanyl.

Welche Aussage zu postoperativen Schmerzen und ihrer Behandlung trifft zu?

Orale Opioide sollten nicht zur postoperativen Schmerztherapie verwendet werden.

Kleinere und mittlere operative Eingriffe erzeugen meist nur geringe Schmerzen.

Ein postoperatives Analgesiekonzept für Patienten ohne Regionalanalgesieverfahren oder nach kleineren und mittleren Eingriffen ist sinnvoll.

Ein Kombinationspräparat zusammengesetzt aus Oxycodon und Naloxon weist gegenüber dem Oxycodonpräparat keine Vorteile auf.

Oxycodon ist ein schwächeres Opioid als Piritramid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogatzki-Zahn, E., Zahn, P. Neue Substanzen und Applikationsformen für die postoperative Schmerztherapie. Schmerz 22, 353–369 (2008). https://doi.org/10.1007/s00482-008-0665-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-008-0665-5

Schlüsselwörter

Keywords

Navigation