Skip to main content
Log in

Kortikale Dysbalance des Migränikerhirns – Hyperexzitabilität als Folge einer Sensitisierung?

Cortical dysbalance in the brain in migraineurs – hyperexcitability as the result of sensitisation?

  • Übersichten
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Eine kortikale Dysbalance spielt in der Pathophysiologie der Migräne eine zentrale Rolle. Zahlreiche elektrophysiologische Studien sowie Untersuchungen mittels transkranieller Magnetstimulation eruierten das Exzitabilitätsniveau von Migränikern im interiktualen Intervall. Repliziert wurde mehrfach, dass Migränepatienten unfähig sind, bei einer repetitiven Reizung eines Stimulus zu habituieren. In der aktuellen Literatur wird indes kontrovers diskutiert, ob dieses Defizit auf einem erniedrigten oder erhöhten neuronalen Präaktivierungslevel basiert. Vermutlich ist diese Debatte jedoch verfehlt. Vielmehr scheint eine Vielzahl externer und intrinsischer Faktoren die kortikale Exzitabilität sowie die Attackenfrequenz und -intensität zu beeinflussen. So ist ein Habituierungsdefizit nicht spezifisch für die Migräne und noch nicht einmal für Schmerz, dasselbe Phänomen findet sich u. a. bei Tinnituspatienten, sofern der Tinnitus chronisch ist. Vermutlich ist eine kortikale Hyperexzitabilität die Folge einer Chronifizierung und dem damit einhergehenden zentralen Sensitisierungsprozess.

Abstract

A cortical dysbalance has a pivotal role in the pathophysiology of migraine. Numerous electrophysiological and transcranial magnetic stimulation (TMS) studies have investigated the interictal excitability level in migraineurs and have shown a consistent lack of habituation during repetitive stimulation. There is some controversy in the current literature over whether this deficit is based on a lowered or an elevated preactivation level. However, the current discussion may be misguided. It seems that multiple external and intrinsic factors influence the level of cortical excitability and the frequency and intensity of attacks: Habituation is specific neither to migraine nor even to pain; the same phenomenon is found in tinnitus patients, for example. Cortical hyperexcitability is presumably the result of chronicity and the concomitant central sensitisation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Afra J (2005) Intensity dependence of auditory evoked cortical potentials in migraine. Changes in the periictal period. Funct Neurol 20: 199–200

    PubMed  Google Scholar 

  2. Afra J, Cecchini AP, De Pasqua V et al. (1998a) Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain 121: 233–241

    Article  PubMed  Google Scholar 

  3. Afra J, Mascia A, Gerard P et al. (1998b) Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann Neurol 44: 209–215

    Article  PubMed  CAS  Google Scholar 

  4. Afra J, Proietti Cecchini A, Sandor PS, Schoenen J (2000) Comparison of visual and auditory evoked cortical potentials in migraine patients between attacks. Clin Neurophysiol 111: 1124–1129

    Article  PubMed  CAS  Google Scholar 

  5. Alstadhaug KB, Bekkelund S, Salvesen R (2007) Circannual periodicity of migraine? Eur J Neurol 14: 983–988

    Article  PubMed  CAS  Google Scholar 

  6. Ambrosini A, De Noordhout AM, Sandor PS, Schoenen J (2003a) Electrophysiological studies in migraine: a comprehensive review of their interest and limitations. Cephalalgia 23 [suppl 1]: 13–31

  7. Ambrosini A, Rossi P, De Pasqua et al. (2003b) Lack of habituation causes high intensity dependence of auditory evoked cortical potentials in migraine. Brain 126: 2009–2015

    Article  PubMed  CAS  Google Scholar 

  8. Antal A, Arlt S, Nitsche MA et al. (2006) Higher variability of phosphene thresholds in migraineurs than in controls: a consecutive transcranial magnetic stimulation study. Cephalalgia 26: 865–870

    Article  PubMed  CAS  Google Scholar 

  9. Aurora SK, Barrodale P, Chronicle EP, Mulleners WM (2005) Cortical inhibition is reduced in chronic and episodic migraine and demonstrates a spectrum of illness. Headache 45: 546–552

    Article  PubMed  Google Scholar 

  10. Aurora SK, Welch KM, Al-Sayed F (2003) The threshold for phosphenes is lower in migraine. Cephalalgia 23: 258–263

    Article  PubMed  CAS  Google Scholar 

  11. Aurora SK, Cao Y, Bowyer SM, Welch KM (1999) The occipital cortex is hyperexcitable in migraine: experimental evidence. Headache 39: 469–476

    Article  PubMed  CAS  Google Scholar 

  12. Aurora SK, Welch M (2004) Controversies in headache. Cephalalgia 24: 316–317; author reply 318–319

    Article  PubMed  CAS  Google Scholar 

  13. Battelli L, Black KR, Wray SH (2002) Transcranial magnetic stimulation of visual area V5 in migraine. Neurology 58: 1066–1069

    PubMed  Google Scholar 

  14. Bohotin V, Fumal A, Vandenheede M et al. (2003) Excitability of visual V1-V2 and motor cortices to single transcranial magnetic stimuli in migraine: a reappraisal using a figure-of-eight coil. Cephalalgia 23: 264–270

    Article  PubMed  CAS  Google Scholar 

  15. Bohotin V, Fumal A, Vandenheede M et al. (2002) Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain 125: 912–922

    Article  PubMed  CAS  Google Scholar 

  16. Brighina F, Fierro B (2007) Cortical hypoactivity or reduced efficiency of cortical inhibition in migraine? Cephalalgia 27: 187–188; author reply 188–189

    Article  PubMed  CAS  Google Scholar 

  17. Brighina F, Piazza A, Daniele O, Fierro B (2002) Modulation of visual cortical excitability in migraine with aura: effects of 1 Hz repetitive transcranial magnetic stimulation. Exp Brain Res 145: 177–181

    Article  PubMed  Google Scholar 

  18. Brighina F, Piazza A, Vitello G, Aloisio et al. (2004) rTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study. J Neurol Sci 227: 67–71

    Article  PubMed  Google Scholar 

  19. Buchgreitz L, Lyngberg AC, Bendtsen L, Jensen R (2006) Frequency of headache is related to sensitization: a population study. Pain 123: 19–27

    Article  PubMed  CAS  Google Scholar 

  20. Chadaide Z, Arlt S, Antal A et al. (2007) Transcranial direct current stimulation reveals inhibitory deficiency in migraine. Cephalalgia 27: 833–839

    Article  PubMed  CAS  Google Scholar 

  21. Edvinsson L, Uddman R (2005) Neurobiology in primary headaches. Brain Res Brain Res Rev 48: 438–456

    Article  PubMed  Google Scholar 

  22. Fann AV, Preston MA, Bray P et al. (2005) The P50 midlatency auditory evoked potential in patients with chronic low back pain (CLBP). Clin Neurophysiol 116: 681–689

    Article  PubMed  CAS  Google Scholar 

  23. Flor H, Diers M, Birbaumer N (2004) Peripheral and electrocortical responses to painful and non-painful stimulation in chronic pain patients, tension headache patients and healthy controls. Neurosci Lett 361: 147–150

    Article  PubMed  CAS  Google Scholar 

  24. Fumal A, Bohotin V, Vandenheede M, Schoenen J (2003) Transcranial magnetic stimulation in migraine: a review of facts and controversies. Acta Neurol Belg 103: 144–154

    PubMed  Google Scholar 

  25. Fumal A, Coppola G, Bohotin V et al. (2006) Induction of long-lasting changes of visual cortex excitability by five daily sessions of repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers and migraine patients. Cephalalgia 26: 143–149

    Article  PubMed  CAS  Google Scholar 

  26. Gantenbein AR, Sandor PS (2006) Physiological parameters as biomarkers of migraine. Headache 46: 1069–1074

    Article  PubMed  Google Scholar 

  27. Gerber WD, Stephani U, Kirsch E et al. (2002) Slow cortical potentials in migraine families are associated with psychosocial factors. J Psychosom Res 52: 215–222

    Article  PubMed  Google Scholar 

  28. Hargreaves RJ, Shepheard SL (1999) Pathophysiology of migraine – new insights. Can J Neurol Sci 26 [suppl 3]: S12–S19

    Google Scholar 

  29. Judit A, Sandor PS, Schoenen J (2000) Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia 20: 714–719

    Article  PubMed  CAS  Google Scholar 

  30. Kitaj MB, Klink M (2005) Pain thresholds in daily transformed migraine versus episodic migraine headache patients. Headache 45: 992–998

    Article  PubMed  Google Scholar 

  31. Kropp P, Muller B, Gerber WD (2007) Long-lasting migraine alters amplitudes and habituation of contingent negative variation. Cephalalgia 27: 666

    Google Scholar 

  32. Lang E, Kaltenhäuser M, Neundörfer B, Seidler S (2004) Hyperexcitability of the primary somatosensory cortex in migraine: a magnetoencephalographic study. Brain 127: 2459–2469

    Article  PubMed  Google Scholar 

  33. Loo CK, Mitchell PB (2005) A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. J Affect Disord 88: 255–267

    Article  PubMed  Google Scholar 

  34. May A (2003) [The trigeminovascular system in the human. Cerebral blood flow, functional imaging and primary headache]. Nervenarzt 74: 1067–1077

    Article  PubMed  CAS  Google Scholar 

  35. McColl SL, Wilkinson F (2000) Visual contrast gain control in migraine: measures of visual cortical excitability and inhibition. Cephalalgia 20: 74–84

    Article  PubMed  CAS  Google Scholar 

  36. Mulder EJ, Linssen WH, Passchier J, De Geus EJ (2001) Interictal and postictal contingent negative variation in migraine without aura. Headache 41: 72–78

    Article  PubMed  CAS  Google Scholar 

  37. Mulleners WM, Chronicle EP, Palmer JE et al. (2001) Visual cortex excitability in migraine with and without aura. Headache 41: 565–572

    Article  PubMed  CAS  Google Scholar 

  38. Nitsche MA, Lampe C, Antal A et al. (2006) Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci 23: 1651–1657

    Article  PubMed  Google Scholar 

  39. Nitsche MA, Liebetanz D, Lang N et al. (2003) Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 114: 2220–2222; author reply 2222–2223

    Article  PubMed  Google Scholar 

  40. Nitsche MA, Liebetanz D, Tergau F, Paulus W (2002) [Modulation of cortical excitability by transcranial direct current stimulation]. Nervenarzt 73: 332–335

    Article  PubMed  CAS  Google Scholar 

  41. Palmer JE, Chronicle EP, Rolan P, Mulleners WM (2000) Cortical hyperexcitability is cortical under-inhibition: evidence from a novel functional test of migraine patients. Cephalalgia 20: 525–532

    Article  PubMed  CAS  Google Scholar 

  42. Sanchez del Rio M, Alvarez Linera J (2004) Functional neuroimaging of headaches. Lancet Neurol 3: 645–651

    Article  Google Scholar 

  43. Sandor PS, Afra J, Proietti Cecchini AP et al. (2000) From neurophysiology to genetics: cortical information processing in migraine underlies familial influences–a novel approach. Funct Neurol 15 [suppl 3]: 68–72

    Google Scholar 

  44. Schoenen J (1996) Deficient habituation of evoked cortical potentials in migraine: a link between brain biology, behavior and trigeminovascular activation? Biomed Pharmacother 50: 71–78

    Article  PubMed  CAS  Google Scholar 

  45. Schoenen J, Ambrosini A, Sandor PS, Maertens de Noordhout A (2003) Evoked potentials and transcranial magnetic stimulation in migraine: published data and viewpoint on their pathophysiologic significance. Clin Neurophysiol 114: 955–972

    Article  PubMed  Google Scholar 

  46. Schoenen J, Timsit-Berthier M (1993) Contingent negative variation: methods and potential interest in headache. Cephalalgia 13: 28–32

    Article  PubMed  CAS  Google Scholar 

  47. Siniatchkin M, Averkina N, Andrasik F et al. (2006) Neurophysiological reactivity before a migraine attack. Neurosci Lett 400: 121–124

    Article  PubMed  CAS  Google Scholar 

  48. Siniatchkin M, Gerber WD, Kropp P, Vein A (1998) Contingent negative variation in patients with chronic daily headache. Cephalalgia 18: 565–569; discussion 531

    Article  PubMed  CAS  Google Scholar 

  49. Siniatchkin M, Gerber WD, Kropp P et al. (2000) Are the periodic changes of neurophysiological parameters during the pain-free interval in migraine related to abnormal orienting activity? Cephalalgia 20: 20–29

    Article  PubMed  CAS  Google Scholar 

  50. Valeriani M, De Tommaso M, Restuccia D et al. (2003) Reduced habituation to experimental pain in migraine patients: a CO(2) laser evoked potential study. Pain 105: 57–64

    Article  PubMed  CAS  Google Scholar 

  51. Walpurger V, Hebing-Lennartz G, Denecke H, Pietrowsky R (2003) Habituation deficit in auditory event-related potentials in tinnitus complainers. Hear Res 181: 57–64

    Article  PubMed  Google Scholar 

  52. Welch KM (2003) Contemporary concepts of migraine pathogenesis. Neurology 61: S2–S8

    PubMed  CAS  Google Scholar 

  53. Wessman M, Terwindt GM, Kaunisto MA et al. (2007) Migraine: a complex genetic disorder. Lancet Neurol 6: 521–532

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stankewitz, A., May, A. Kortikale Dysbalance des Migränikerhirns – Hyperexzitabilität als Folge einer Sensitisierung?. Schmerz 22 (Suppl 1), 17–21 (2008). https://doi.org/10.1007/s00482-007-0612-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-007-0612-x

Schlüsselwörter

Keywords

Navigation