Skip to main content
Log in

Opioidvermittelte Analgesie und Hyperalgesie

Dr. Jekyll und Mr. Hyde der Schmerztherapie

Opioid-induced analgesia and hyperalgesia

  • Schwerpunkt: Opioide
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Opioide sind Mittel der ersten Wahl in der Therapie mittelschwerer bis starker akuter und chronischer Schmerzzustände. Allerdings können Opioide auch zu einer Schmerzverstärkung führen, welche auf einer Aktivierung pronozizeptiver Systeme beruht.

Neben einer akuten Rezeptordesensibilisierung und einer Hochregulation der Adenylylzyklaseaktivität sind insbesondere die Aktivierung des N-Methyl-D-Aspartat- (NMDA-)Rezeptorsystems und die deszendierende Fazilitierung den antinozizeptiven Eigenschaften des Opioids entgegengerichtet. So können schon nach kurzzeitiger Anwendung Sensibilisierungsprozesse induziert werden, die einen Teil der analgetischen Wirkung des Opioids maskieren und noch viele Tage nach dem Absetzen nachweisbar sein können.

Die Toleranzentwicklung muss als Ungleichgewicht pronozizeptiver und antinozizeptiver Systeme gedeutet werden. Nach länger dauernder Anwendung von μ-Agonisten wurden neben einem ansteigenden Bedarf an Schmerzmitteln paradoxe Schmerzzustände beobachtet. Durch eine Kombination der Opioide mit Substanzen anderer Klassen wie NMDA-Rezeptor-Antagonisten, α2-Agonisten oder nicht steroidalen antiinflammatorischen Analgetika (NSAID), durch Opioidrotationen oder Kombinationen von Opioiden mit unterschiedlicher Rezeptorselektivität können diese Sensibilisierungsprozesse unterdrückt und die Schmerztherapie optimiert werden.

Abstract

Opioids are frequently used for the treatment of moderate to severe acute and chronic pain. However, clinical evidence suggests that opioids can elicit increased sensitivity to noxious stimuli suggesting that administration of opioids can activate both, pain inhibitory and pain facilitatory systems.

Acute receptor desensitization via uncoupling of the receptor from G proteins, upregulation of the cAMP pathway, activation of the N-methyl-D-aspartate (NMDA) receptor system and descending facilitation have been proposed as potential mechanisms underlying opioid-induced hyperalgesia.

The tolerance results from a pain sensitization process more than from a decrease in the opioid effectiveness. Opioid-induced hyperalgesia and tolerance are observed both in animal and human experimental models. Brief exposures to μ-receptor agonists induce long-lasting hyperalgesic effects for days. Furthermore, the prolonged use of opioids in patients often requires increasing doses and may be accompanied by the development of abnormal pain. Successful strategies that may decrease or prevent opioid-induced hyperalgesia include the concomitant administration of drugs such as NMDA antagonists, α2-agonists, or nonsteroidal anti-inflammatory drugs (NSAID), opioid rotation, or combinations of opioids with different receptor selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Adriaenssens G, Vermeyen KM, Hoffmann VL, Mertens E, Adriaensen HF (1999) Postoperative analgesia with i.v. patient-controlled morphine: effect of adding ketamine. Br J Anaesth 83: 393–396

    PubMed  Google Scholar 

  2. Ali NM (1986) Hyperalgesic response ia a patient receiving high concentrations of spinal morphine. Anesthesiology 65: 449–450

    Google Scholar 

  3. Angst MS, Koppert W, Pahl I, Clark JD, Schmelz M (2003) Short-term infusion of the mu-opioid agonist remifentanil in humans causes hyperalgesia during withdrawal. Pain 106: 49–57

    Article  PubMed  Google Scholar 

  4. Arain SR, Ruehlow RM, Uhrich TD, Ebert TJ (2004) The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major impatient surgery. Anesth Analg 98: 153–158

    Article  PubMed  Google Scholar 

  5. Arner S, Rawal N, Gustafsson LL (1988) Clinical experience of long-term treatment with epidural and intrathecal opioids — a nationwide survey. Acta Anaesthesiol Scand 32: 253–259

    PubMed  Google Scholar 

  6. Bernard JM, Hommeril JL, Passuti N, Pinaud M (1991) Postoperative analgesia by intravenous clonidine. Anesthesiology 75: 577–582

    PubMed  Google Scholar 

  7. Bie B, Pan ZZ (2003) Presynaptic mechanism for anti-analgesic and anti-hyperalgesic actions of k-opioid receptors. J Neurosci 23: 7262–7268

    PubMed  Google Scholar 

  8. Borgland SL (2001) Acute opioid receptor desensitization and tolerance: is there a link? Clin Exp Pharmacol Physiol 28: 147–154

    Article  PubMed  Google Scholar 

  9. Bot G, Blake AD, Li S, Reisine T (1998) Fentanyl and its analogs desensitize the cloned mu opioid receptor. J Pharmacol Exp Ther 285: 1207–1218

    PubMed  Google Scholar 

  10. Bruera E, Peirera J, Watanabe C, Belzile M, Kuehn N, Hanson J (1996) Opioid rotation in patients with cancer pain. A retrospective comparison of dose ratios between methadone, hydromorphone, and morphine. Cancer 78: 852–857

    Article  PubMed  Google Scholar 

  11. Carpenter KJ, Chapman V, Dickenson AH (2000) Neuronal inhibitory effects of methadone are predominantly opioid receptor mediated in the rat spinal cord in vivo. Eur J Pain 4: 19–26

    Article  PubMed  Google Scholar 

  12. Celerier E, Laulin J, Larcher A, Le Moal M, Simonnet G (1999) Evidence for opiate-activated NMDA processes masking opiate analgesia in rats. Brain Res 847: 18–25

    Article  PubMed  Google Scholar 

  13. Celerier E, Laulin JP, Corcuff JB, Le Moal M, Simonnet G (2001) Progressive enhancement of delayed hyperalgesia induced by repeated heroin administration: A sensitization process. J Neurosci 21: 4074–4080

    PubMed  Google Scholar 

  14. Celerier E, Rivat C, Jun Y, Laulin JP, Larcher A, Reynier P, Simonnet G (2000) Long-lasting hyperalgesia induced by fentanyl in rats: preventive effect of ketamine. Anesthesiology 92: 465–472

    PubMed  Google Scholar 

  15. Chang HM, Berde CB, Holz GG, Steward GF, Kream RM (1989) Sufentanil, morphine, met-enkephalin, and kappa-agonist (U-50,488H) inhibit substance P release from primary sensory neurons: A model for presynaptic spinal opioid actions. Anesthesiology 70: 672–677

    PubMed  Google Scholar 

  16. Cheng HYM, Pitcher GM, Laviolette SR et al. (2002) DREAM is a critical transcriptional repressor for pain modulation. Cell 108: 31–43

    Article  PubMed  Google Scholar 

  17. Chia YY, Liu K, Chow LH, Lee TY (1999) The preoperative administration of intravenous dextromethorphan reduces postoperative morphine consumption. Anesth Analg 89: 752

    Google Scholar 

  18. Chia YY, Liu K, Wang JJ, Kuo MC, Ho ST (1999) Intraoperative high dose fentanyl induces postoperative fentanyl tolerance. Can J Anaesth 46: 872–877

    PubMed  Google Scholar 

  19. Clark JD (2002) Hyperalgesic responses in methadone maintenance patients. Pain 99: 608–609

    Article  PubMed  Google Scholar 

  20. Colpaert FC (1996) System theory of pain and of opiate analgesia: No tolerance to opiates. Pharmacol Rev 48: 402

    Google Scholar 

  21. Compton P, Charuvastra VC, Ling W (2001) Pain intolerance in opioid-maintained former opiate addicts: Effect of long-acting maintenance agent. Drug Alcohol Depend 63: 139–146

    Article  PubMed  Google Scholar 

  22. Connor M, Christie MJ (1999) Opiod receptor signalling mechanisms. Clin Exp Pharmacol Physiol 26: 493–499

    Article  PubMed  Google Scholar 

  23. Crain SM, Shen KF (1998) Modulation of opioid analgesia, tolerance and dependnece by Gs-coupled, GM1ganglioside-regulated opioid receptor functions. Trends Pharmacol Sci 19: 358–365

    Article  PubMed  Google Scholar 

  24. Davis AM, Inturrisi CE (1999) d-methadone blocks morphine tolerance and N-methyl-D-aspartate-induced hyperalgesia. J Pharmacol Exp Ther 289: 1048–1053

    PubMed  Google Scholar 

  25. De Kock MF, Pichon G, Scholtes JL (1992) Intraoperative clonidine enhances postoperative morphine patient-controlled analgesia. Can J Anaesth 39: 537–544

    PubMed  Google Scholar 

  26. Dickenson AH, Chapman V, Green GM (1997) The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol 28: 633–638

    PubMed  Google Scholar 

  27. Doverty M, White JM, Somogyi AA, Bochner F, Ali R, Ling W (2001) Hyperalgesic responses in methadone maintenance patients. Pain 90: 91–96

    Article  PubMed  Google Scholar 

  28. Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Ann Rev Neurosci 14: 219–245

    Article  PubMed  Google Scholar 

  29. Freye E, Latasch L (2003) Toleranzentwicklung unter Opioidgabe — Molekulare Mechanismen und klinische Bedeutung. Anästhesiol Intensivmed Notfallmed Schmerzther 38: 14–26

  30. Galer BS, Lee D, Ma T, Nagle B, Schlagheck TG (2005) MorphiDex (morphine sulfate/dextrometorphan hydrobromide combination) in the treatment of chronic pain: Three multicenter, randomized, double-blind, controlled clinical trials fail to demonstrate enhanced opioid analgesia or reduction in tolerance. Pain 115: 284–295

    PubMed  Google Scholar 

  31. Gardell LR, Wang R, Burgess SE et al. (2002) Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J Neurosci 22: 6747–6755

    PubMed  Google Scholar 

  32. Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 76: 6666–6670

    PubMed  Google Scholar 

  33. Gowing LR, Farrell M, Ali RL, White JM (2002) α2-adrenergic agonists in opioid withdrawal. Addiction 97: 49–58

    Article  PubMed  Google Scholar 

  34. Guignard B, Bossard AE, Coste C et al. (2000) Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology 93: 409–417

    Article  PubMed  Google Scholar 

  35. Guignard B, Coste C, Costes H et al. (2002) Supplementing desflurane-remifentanil anesthesia with small-dose ketamine reduces perioperative opioid analgesic requirements. Anesth Analg 95: 103–108

    Article  PubMed  Google Scholar 

  36. Gustorff B, Felleiter P, Nahlik G, Brannath W, Hoerauf KH, Spacek A, Kress HG (2001) The effect of remifentanil on the heat pain threshold in volunteers. Anesth Analg 92: 369–374

    PubMed  Google Scholar 

  37. Gustorff B, Nahlik G, Hoerauf KH, Kress HG (2002) The absence of acute tolerance during remifentanil infusion in volunteers. Anesth Analg 94: 1223–1228

    Article  PubMed  Google Scholar 

  38. He L, Fong J, von Zastrow M (2002) Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108: 271–282

    Article  PubMed  Google Scholar 

  39. Heinricher MM, McGaraughty S, Grandy DK (1997) Circuitry underlying antiopioid action of orphanin FQ in the rostral ventromedial medulla. J Neurophysiol 78: 3351–3358

    PubMed  Google Scholar 

  40. Heinricher MM, Morgan MM, Tortorici V, Fields HL (1994) Disinhibition of Off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neurosci 63: 279–288

    Article  Google Scholar 

  41. Hood DD, Curry R, Eisenach JC (2003) Intravenous remifentanil produces withdrawal hyperalgesia in volunteers with capsaicin-induced hyperalgesia. Anesth Analg 97: 810–815

    Article  PubMed  Google Scholar 

  42. Joshi W, Connelly NR, Reuben SS, Wolckenhaar M, Thakkar N (2003) An evaluation of the safety and efficacy of administering rofecoxib for postoperative pain management. Anesth Analg 97: 35–38

    Article  PubMed  Google Scholar 

  43. Kaplan H, Fields HL (1991) Hyperalgesia during acute opioid abstinence: Evidence for a nociceptive facilitating function of the rostral ventromedial medulla. J Neurosci 11: 1433–1439

    PubMed  Google Scholar 

  44. Katz NP (2000) Morphidex (MS:DM) double-blind, multiple-dose studies in chronic pain patients. J Pain Symptom Manage 19: 37–41

    Article  Google Scholar 

  45. Keith DE, Anton B, Murray SR et al. (1998) Mu-opioid receptor internalization: Opiate drugs have differential effects on a conserved endocytic mechansim in vitro and in the mammalian brain. Mol Pharmacol 53: 377–384

    PubMed  Google Scholar 

  46. Kieffer BL, Evans CJ (2002) Opioid tolerance — In search of the holy grail. Cell 108: 587–590

    Article  PubMed  Google Scholar 

  47. Kissin I, Bright CA, Bradley EL Jr (2000) Acute tolerance to continuously infused alfentanil: the role of cholecystokinin and N-methyl-D-aspartate-nitric oxide systems. Anesth Analg 91: 110–116

    Article  PubMed  Google Scholar 

  48. Kissin I, Lee SS, Arthur GR, Bradley EL Jr (1996) Time course characteristics of acute tolerance development to continuously infused alfentanil in rats. Anesth Analg 83: 600–605

    Article  PubMed  Google Scholar 

  49. Koch T, Schulz S, Pfeiffer M, Klutzny M, Schröder H, Kahl E, Höllt V (2001) C-terminal splice variants of the mouse mu-opioid receptor differ in morphine-induced internalization and receptor resensitization. J Biol Chem 276: 31408–31414

    Article  PubMed  Google Scholar 

  50. Koppert W, Angst MS, Alsheimer M, Sittl R, Albrecht S, Schüttler J, Schmelz M (2003) Naloxone provokes similar pain facilitation as observed after short-term infusion of remifentanil in humans. Pain 106: 91–99

    Article  PubMed  Google Scholar 

  51. Koppert W, Dern SK, Sittl R, Albrecht S, Schuttler J, Schmelz M (2001) A new model of electrically evoked pain and hyperalgesia in human skin: the effects of intravenous alfentanil, S(+)-ketamine, and lidocaine. Anesthesiology 95: 395–402

    Article  PubMed  Google Scholar 

  52. Koppert W, Sittl R, Scheuber K, Alsheimer M, Schmelz M, Schüttler J (2003) Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology 99: 152–159

    Article  PubMed  Google Scholar 

  53. Larcher A, Laulin JP, Celerier E, Le Moal M, Simonnet G (1998) Acute tolerance associated with a single opiate administration: involvement of N-methyl-D-aspartate-dependent pain facilitatory systems. Neurosci 84: 583–589

    Article  Google Scholar 

  54. Laulin JP, Larcher A, Celerier E, Le Moal M, Simonnet G (1998) Long-lasting increased pain sensitivity in rat following exposure to heroin for the first time. Eur J Neurosci 10: 782–785

    Article  PubMed  Google Scholar 

  55. Lee SC, Wang JJ, Ho ST, Tao PL (1997) Nalbuphine coadministered with morphine prevents tolerance and dependence. Anesth Analg 84: 810–815

    Article  PubMed  Google Scholar 

  56. Li X, Angst MS, Clark JD (2001) A murine model of opioid-induced hyperalgesia. Brain Res Mol Brain Res 86: 56–62

    Article  PubMed  Google Scholar 

  57. Likar R, Griessinger N, Sadjak A, Sittl R (2003) Transdermales Buprenorphin für die Behandlung chronischer Tumor- und Nicht-Tumorschmerzen. Wien Med Wochenschr 153: 317–322

    Article  PubMed  Google Scholar 

  58. Luginbühl M, Gerber A, Schnider TW, Petersen-Felix S, Arendt-Nielsen L (2003) Modulation of remifentanil-induced analgesia, hyperalgesia and tolerance by small-dose ketamine in humans. Anesth Analg 96: 726–732

    Article  PubMed  Google Scholar 

  59. Malmberg AB, Yaksh TL (1992) Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257: 1276–1279

    PubMed  Google Scholar 

  60. Mao J, Price DD, Caruso F, Mayer DJ (1996) Oral administration of dextromethorphan prevents the development of morphine tolerance and dependence in rats. Pain 67: 361–368

    Article  PubMed  Google Scholar 

  61. Mercadante S (1999) Opioid rotation for cancer pain: Rationale and clinical aspects. Cancer 86: 1856–1866

    Article  PubMed  Google Scholar 

  62. Morley JS, Watt JW, Wells JC, Miles JB, Finnegan MJ, Leng G (1993) Methadone in pain uncontrolled by morphine. Lancet 342: 1243

    Article  PubMed  Google Scholar 

  63. Ossipov MH, Lai J, Vanderah TW, Porreca F (2003) Induction of pain facilitation by sustained opioid exposure: Relationship to opioid antinociceptive tolerance. Life Sci 73: 783–800

    Article  PubMed  Google Scholar 

  64. Reuben SS, Bhopatkar M, Maciolek H, Joshi W, Sklar J (2002) Preemptive analgesic effect of refecoxib after ambulatory arthroscopic knee surgery. Anesth Analg 94: 55–59

    Article  PubMed  Google Scholar 

  65. Rivat C, Laulin JP, Corcuff JB, Celerier E, Pain L, Simonnet G (2002) Fentanyl enhancement of Carrageenan-induced long-lasting hyperalgesia in rats: Prevention by the N-methyl-d-aspartate Receptor Antagonist Ketamine. Anesthesiology 96: 381–391

    Article  PubMed  Google Scholar 

  66. Schmid RL, Sandler AN, Katz J (1999) Use and efficacy of low-dose ketamine in the management of acute postoperative pain: a review of current techniques and outcomes. Pain 82: 111–125

    Article  PubMed  Google Scholar 

  67. Schraag S, Checketts MR, Kenny GN (1999) Lack of rapid development of opioid tolerance during alfentanil and remifentanil infusions for postoperative pain. Anesth Analg 89: 753–757

    Article  PubMed  Google Scholar 

  68. Simonnet G, Rivat C (2003) Opioid-induced hyperalgesia: Abnormal or normal pain. Neuroreport 14: 1–7

    Article  PubMed  Google Scholar 

  69. Sinatra RS, Shen QJ, Halaszynski T, Luther MA, Shaheen Y (2004) Preoperative rofecoxib oral suspension as an analgesic adjunct after lower abdominal surgery: the effects on effort-dependent pain and pulmonary function. Anesth Analg 98: 135–140

    Article  PubMed  Google Scholar 

  70. Sjogren P, Dragsted L, Christensen CB (1993) Myoclonic spasms during treatment with high doses of intravenous morphine in renal failure. Acta Anaesthesiol Scand 37: 780–782

    PubMed  Google Scholar 

  71. Sjogren P, Jensen NH, Jensen TS (1994) Disappearence of morphine-induced hyperalgesia after discontinuing or substituting with other opioid agonists. Pain 59: 313–316

    Article  PubMed  Google Scholar 

  72. Smith MT (2000) Neuroexcitatory effects of morphine and hydromorphone: Evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol 27: 524–528

    Article  PubMed  Google Scholar 

  73. Solomon RL, Corbit JD (1974) An opponent-process theory of motivation. Psych Rev 81: 119–145

    Google Scholar 

  74. Vanderah TW, Ossipov MH, Lai J, Malan TP, Porreca F (2001) Mechanisms of opioid-induced pain and antinociceptive tolerance: Descending facilitation and spinal dynorphin. Pain 92: 5–9

    Article  PubMed  Google Scholar 

  75. Vanderah TW, Suenaga NMH, Ossipov MH, Malan TP, Lai J, Porreca F (2001) Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci 21: 279–286

    PubMed  Google Scholar 

  76. Vinik HR, Kissin I (1998) Rapid development of tolerance to analgesia during remifentanil infusion in human. Anesth Analg 86: 1307–1311

    Article  PubMed  Google Scholar 

  77. Weinbroum AA, Gorodetzky A, Nirkin A et al. (2002) Dextromethorphan for the reduction of immediate and late postoperative pain and morphine consumption in orthopedic oncology patients: a randomized, placebo-controlled, double-blind study. Cancer 95: 1164–1170

    Article  PubMed  Google Scholar 

  78. Whistler J, Chuang HH, Chu P, Jan LY, von Zastrow M (1999) Functional dissociation of m Opioid receptor signalling and endocytosis: Implications for the biology of opiate tolerance and addiction. Neuron 23: 737–746

    Article  PubMed  Google Scholar 

  79. Wilhelm W, Dorscheid E, Schlaich N, Niederprüm P, Deller D (1999) Remifentanil zur Analgosedierung von Intensivpatienten. Anaesthesist 48: 625–629

    Article  PubMed  Google Scholar 

  80. Yaksh TL, Harty GJ (1998) Pharmakology of the allodynia in rats evoked by high dose intrathecal morphine. J Pharmacol Exp Ther 244: 501–507

    Google Scholar 

  81. Yamamoto T, Ohno M, Ueki S (1988) A selective k-agonist, U-50,488H, blocks the development of tolerance to morphine analgesia in rats. Eur J Pharmacol 156: 173–176

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Koppert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koppert, W. Opioidvermittelte Analgesie und Hyperalgesie. Schmerz 19, 386–394 (2005). https://doi.org/10.1007/s00482-005-0424-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-005-0424-9

Schlüsselwörter

Keywords

Navigation