Skip to main content
Log in

Selektive C-Faser-Stimulation durch Stimulation winziger Hautareale

Stimulation of tiny skin areas for selective stimulation of C fibres

  • Übersichten
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In der Vergangenheit war es schwierig, die zentrale Verarbeitung primärer C-Faser-Afferenzen separat von der Verarbeitung von Aδ-Faser-Afferenzen zu untersuchen. Eine notwendige und hinreichende Bedingung für eine Untersuchung des C-Faser-Systems ist die selektive Stimulation der primären C-Faser-Afferenz bei gleichzeitiger Vermeidung der Aktivierung der Aδ-Afferenz. Die Stimulation winziger Hautareale ermöglicht eine solche selektive Aktivierung der C-Fasern.

Methoden und Ergebnisse

Wesentliche methodische Aspekte der Stimulation winziger Hautareale sowie Ergebnisse zu evozierten Potenzialen und deren Quellenlokalisationen werden referiert. Des Weiteren werden Potenzial und Möglichkeiten dieser Methode mit anderen Methoden zur Untersuchung der zentralen Verarbeitung humaner C-Faser-Afferenzen verglichen.

Schlussfolgerung

Mit der Methode der Stimulation winziger Hautareale steht ein einfaches Verfahren der selektiven Stimulation von C-Fasern zur Verfügung.

Abstract

Background

It has been found difficult to stimulate the primary C-fibre afferents separately from those of Aδ fibres. A necessary and sufficient condition for the investigation of the C-fibre system is the selective stimulation of C fibres without activation of Aδ fibres. The stimulation of tiny skin areas allows such a selective activation of C fibres.

Methods and results

The main aspects of the method for stimulation of tiny skin areas as well as some results obtained by this method are reported here. The application of this method is compared with applications of other methods that allow an investigation of central processing of human C-fibre input.

Conclusion

The stimulation of tiny skin areas represents a simple method for selective stimulation of C fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Arendt-Nielsen L, Bjerring P (1988) Reaction times to painless and painful CO2 laser and argon laser stimulation. Eur J Appl Physiol 58:266–273

    Google Scholar 

  2. Birbaumer N, Lutzenberger W, Montoya P, Larbig W, Unertl K, Töpfner S, Grodd W, Taub E, Flor H (1997) Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci 17:5503–5508

    PubMed  Google Scholar 

  3. Bragard D (1995) Perception and neurophysiological correlates of brief infrared laser pulses: influence of cutaneous stimulation area. Thesis, Université catholique de Louvain, Louvain

    Google Scholar 

  4. Bragard D, Chen ACN, Plaghki L (1996) Direct isolation of ultra-late (C-fibre) evoked brain potentials by CO2 laser stimulation of tiny cutaneous surface areas in man. Neurosci Lett 209:81–84

    Article  PubMed  Google Scholar 

  5. Bromm B, Neitzel H, Tecklenburg A, Treede R (1983) Evoked cerebral potential correlates of c-fibre activity in man. Neurosci Lett 43:109–114

    Article  PubMed  Google Scholar 

  6. Bromm B, Jahnke MT, Treede R-D (1984) Responses of human cutaneous afferents to CO2 laser stimuli causing pain. Exp Brain Res 55:158–166

    Article  PubMed  Google Scholar 

  7. Bromm B, Treede R-D (1984) Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum Neurobiol 3:33–40

    PubMed  Google Scholar 

  8. Bromm B, Treede R-D (1987) Human cerebral potentials evoked by CO2 laser stimuli causing pain. Exp Brain Res 67:153–162

    Article  PubMed  Google Scholar 

  9. Bromm B, Treede R-D (1991) Laser-evoked cerebral potentials in the assessment of cutaneous pain sensitivity in normal subjects and patients. Rev Neurol 147:625–643

    PubMed  Google Scholar 

  10. Devor M, Carmon A, Frostig R (1982) Primary afferent and spinal sensory neurons that respond to brief pulses of intensive infrared laser radiation: a preliminary survey in rats. Exp Neurol 76:483–494

    Article  PubMed  Google Scholar 

  11. Dutsch M, Marthol H, Stemper B, Brys M, Haendl T, Hilz MJ (2002) Small fiber dysfunction predominates in Fabry neuropathy. J Clin Neurophysiol 19:575–586

    Article  PubMed  Google Scholar 

  12. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484

    Article  PubMed  Google Scholar 

  13. Forss N, Raij TT, Seppa M, Hari R (2005) Common cortical network for first and second pain. NeuroImage 24:132–142

    Article  PubMed  Google Scholar 

  14. Gehling M, Tryba M, Niebergall H, Hufschmidt A, Schild M, Geiger K (2003) Komplexe regionale Schmerzsyndrome CRPS I und II. Schmerz 17:309–316

    Article  PubMed  Google Scholar 

  15. Handwerker HO, Kobal G (1993) Psychophysiology of experimentally induced pain. Physiol Rev 73:639–671

    PubMed  Google Scholar 

  16. Kakigi R, Shibasaki H, Tanaka K, Ikeda T, Oda KI, Endo C, Ikeda A, Neshige R, Kuroda Y, Miyata K, Yi S, Ikegawa S, Araki S (1991) CO2 laser-induced pain-related somatosensory evoked potentials in peripheral neuropathies: correlation between elektrophysiological and histological findings. Muscle Nerve 14:441–450

    Article  PubMed  Google Scholar 

  17. Lankers J, Frieling A, Kunze K, Bromm B (1991) Ultralate cerebral potentials in a patient with hereditary motor and sensory neuropathy type I indicate preserved C-fibre function. J Neurol Neurosurg Psychiat 54:650–652

    PubMed  Google Scholar 

  18. Magerl W, Ali Z, Ellrich J, Meyer RA, Treede R-D (1999) C- and Aδ-fiber components of heat-evoked cerebral potentials in healthy human subjects. Pain 82:127–137

    Article  PubMed  Google Scholar 

  19. Maihöfner C, Handwerker HO, Neundörfer B, Birklein F (2003) Patterns of cortical reorganization in complex regional pain syndrome. Neurology 61:1707–1715

    PubMed  Google Scholar 

  20. Mense SS (2004) Funktionelle Neuroanatomie der Schmerzreize. Schmerz 18:225–237

    Article  PubMed  Google Scholar 

  21. Mouraux A, Guerit JM, Plaghki L (2004) Refractoriness cannot explain why C-fiber laser-evoked brain potentials are recorded only if concomitant Aδ-fiber activation is avoided. Pain 112:16–26

    Article  PubMed  Google Scholar 

  22. Müller H (2000) Neuroplastizität und Schmerzchronifizierung. Anästhesiol Intensivmed Notfallmed Schmerzther 35:274–284

  23. Nahra H, Plaghki L (2003) The effects of A-fiber pressure block on perception and neurophysiological correlates of brief non-painful and painful CO2 laser stimuli in humans. Eur J Pain 7:189–199

    Article  PubMed  Google Scholar 

  24. Nix WA (2004) Die Bandbreite der Neuropathie bei Diabetes und gestörter Glukosetoleranz. Schmerz 18:327–328

    Article  PubMed  Google Scholar 

  25. Ochoa J, Mair WGP (1976) The normal sural nerve in man: I. ultrastructure and number of fibres and cells. Acta Neuropathol (Berlin) 13:197–216

    Google Scholar 

  26. Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo AB, Bushnell MC (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5:900–904

    Article  PubMed  Google Scholar 

  27. Opsommer E, Masquelier E, Plaghki L (1999) Determination of nerve conduction velocity of C-fibres in humans from thermal thresholds to contact heat (thermode) and from evoked brain potentials to radiant heat (CO2 laser). Clin Neurophysiol 29:411–422

    Google Scholar 

  28. Opsommer E, Weiss T, Miltner WHR, Plaghki L (2001) Scalp topography of ultralate (C-fibres) evoked potentials following thulium YAG laser stimuli to tiny skin surface areas in humans. Clin Neurophysiol 112:1868–1874

    Article  PubMed  Google Scholar 

  29. Opsommer E, Weiss T, Plaghki L, Miltner WHR (2001) Dipole analysis of ultralate (C-fibres) evoked potentials after laser stimulation of tiny cutaneous surface areas in humans. Neurosci Lett 298:41–44

    Article  PubMed  Google Scholar 

  30. Orstavik K, Weidner C, Schmidt R, Schmelz M, Hilliges M, Jorum E, Handwerker H, Torebjörk E (2003) Pathological C-fibres in patients with a chronic painful condition. Brain 126:567–578

    Article  PubMed  Google Scholar 

  31. Ossipov MH, Zhang ET, Carvajal C, Gardell L, Quirion R, Dumont Y, Lai J, Porreca F (2002) Selective mediation of nerve injury-induced tactile hypersensitivity by neuropeptide Y. J Neurosci 22:9858–9867

    PubMed  Google Scholar 

  32. Plaghki L, Mouraux A (2002) Brain responses to signals ascending through C-fibers. Int Congr Ser 1232:181–192

    Article  Google Scholar 

  33. Plaghki L, Mouraux A (2003) How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Clin Neurophysiol 33:269–277

    Google Scholar 

  34. Ploner M, Gross J, Timmermann L, Schnitzler A (2002) Cortical representation of first and secon pain sensation in humans. Proc Natl Acad Sci USA 99:12444–12448

    Article  PubMed  Google Scholar 

  35. Price DD (1988) Psychological and neural mechanisms of pain. Raven Press, New York

  36. Price DD (1996) Selective activation of A-delta and C nociceptive afferents by different parameters of nociceptive heat stimulation: a tool for analysis of central mechanisms of pain. Pain 68:1–3

    Article  PubMed  Google Scholar 

  37. Qiu YH, Inui K, Wang XH, Tran TD, Kakigi R (2001) Conduction velocity of the spinothalamic tract in humans as assessed by CO2 laser stimulation of C-fibers. Neurosci Lett 311:181–184

    Article  PubMed  Google Scholar 

  38. Qiu YH, Fu Q, Wang XH, Tran TD, Inui K, Iwase S, Kakigi R (2003) Microneurographic study of C-fiber discharges induced by CO2 laser stimulation in humans. Neurosci Lett 353:25–28

    Article  PubMed  Google Scholar 

  39. Reinert A, Treede RD, Bromm B (2000) The pain inhibiting pain effect: an electrophysiological study in humans. Brain Res 862:103–110

    Article  PubMed  Google Scholar 

  40. Rommel O, Gehring M, Dertwinkel R, Witscher K, Zenz M, Malin JP, Jänig W (1999) Hemisensory impairment in patients with complex regional pain syndrome. Pain 80:95–101

    Article  PubMed  Google Scholar 

  41. Schmidt RF, Schaible HG, Messlinger K, Heppelmann B, Hanesch U, Pawlak M (1994) Silent and active nociceptors: structure, functions, and clinical implications. In: Gebhart GF, Hammond DL, Jensen TS (eds) Proceedings of the 7th World Congress of Pain. IASP Press, Seattle, pp 213–250

  42. Tarkka IM, Treede R-D (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10:513–519

    PubMed  Google Scholar 

  43. Tran TD, Lam K, Hoshiyama M, Kakigi R (2001) A new method for measuring the conduction velocities of A beta-, A delta- and C-fibers following electric and CO2 laser stimulation in humans. Neurosci Lett 301:187–190

    Article  PubMed  Google Scholar 

  44. Tran TD, Inui K, Hoshiyama M, Lam K, Kakigi R (2002) Conduction velocity of the spinothalamic tract following CO2 laser stimulation of C-fibers in humans. Pain 95:125–131

    Article  PubMed  Google Scholar 

  45. Treede R-D (2003) Neurophysiological studies of pain pathways in peripheral and central nervous system disorders. J Neurol 250:1152–1161

    Article  PubMed  Google Scholar 

  46. Truini A, Haanpaa M, Zucchi R, Galeotti F, Iannetti GD, Romaniello A, Cruccu G (2003) Laser-evoked potentials in post-herpetic neuralgia. Clin Neurophysiol 114:702–709

    Article  PubMed  Google Scholar 

  47. Von Giesen HJ, Weiss P, Arendt G, Hefter H (2003) Potential C-fiber damage in Wilson’s disease. Acta Neurol Scand 108:257–261

    Article  PubMed  Google Scholar 

  48. Weiss T, Kumpf K, Ehrhardt J, Gutberlet I, Miltner WHR (1997) A bioadaptive approach for experimental pain research in humans using laser-evoked brain potentials. Neurosci Lett 227:95–98

    Article  PubMed  Google Scholar 

  49. Weiss T, Miltner WHR, Dillmann J (2003) The influence of semantic priming on event-related potentials to painful laser-heat stimuli in migraine patients. Neurosci Lett 340:135–138

    Article  PubMed  Google Scholar 

  50. Weiss T, Miltner WHR, Liepert J, Meissner W, Taub E (2004) Rapid functional plasticity in the primary somatomotor cortex and perceptual changes after nerve block. Eur J Neurosci 20:3413–3423

    Article  PubMed  Google Scholar 

  51. Weiss T, Spohn D, Meyer A, Miltner WHR (2004) Ultra-late evoked potentials following stimulation of tiny skin surface areas in humans. Clin Neurophysiol 35:211

    Google Scholar 

  52. Willis WD (1985) The pain system. The neural basis of nociceptive transmission in the mammalian nervous system. Karger, Basel

Download references

Danksagung

Wir danken Prof. Leon Plaghki und Dr. Emmanuelle Opsommer (Université Catholique de Louvain), die im Rahmen einer Kooperation die Übernahme der Methode der Stimulation winziger Hautareale in unser Labor ermöglichten.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Weiss.

Additional information

Gefördert durch das IZkF Jena

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, T., Miltner, W.H.R. Selektive C-Faser-Stimulation durch Stimulation winziger Hautareale. Schmerz 20, 238–244 (2006). https://doi.org/10.1007/s00482-005-0416-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-005-0416-9

Schlüsselwörter

Keywords

Navigation