Skip to main content
Log in

Generating hourly mean areal precipitation times series with an at-site weather generator in Switzerland

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Continuous hydrological simulation is a powerful approach for generating long-term series of river discharges used for hydrological analyses. This approach requires as inputs precipitation time series generated by a stochastic weather generator (WGEN) to simulate discharge time series. For small catchments where a lumped hydrological model is suitable, the weather generator needs to generate time series of mean areal precipitation (MAP). Here we assess the ability of an at-site hybrid WGEN to generate time series of MAP for a set of test areas ranging from 9 to 1,089 km\(^2\). The generator is composed of a model based on a Markov chain model used to generate time series of daily MAP, and a multiplicative random cascade used to disaggregate them to an hourly resolution. The work is carried out at several test locations in Switzerland with different precipitation regimes. The parameters of the model are estimated on the observed MAP time series extracted from CombiPrecip, a 1 km\(^2\) resolution radar-gauge product of precipitation assimilating rain gauges and radar data. For each test location and each test area, 100-year time series are generated and compared with the observed MAP time series. Whatever the location and spatial scale considered, the performance of the WGEN is satisfactory. The model reproduces the observed standard statistics and extreme precipitation of observed MAP very well. At an hourly resolution, better results are obtained at larger spatial scales, while no difference is noticed at a daily resolution. The study shows that using this hybrid WGEN is possible to model and generate MAP for areas ranging from 9 to 1,089 km\(^2\). Moreover, this particular WGEN is easy to implement for end-user applications. The modelling approach is even more promising as high-resolution gridded precipitation data are expected to become increasingly available worldwide, offering a source of data to calibrate the hybrid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availibility

No datasets were generated or analysed during the current study.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Funding acquisition: BH. Experimental design: KM, BH and GE. Script development: KM and GE. Model calibration, simulations and analyses: KM. Figure preparation: KM. Paper redaction: KM, GE and BH.

Corresponding author

Correspondence to Kaltrina Maloku.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 13797 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maloku, K., Evin, G. & Hingray, B. Generating hourly mean areal precipitation times series with an at-site weather generator in Switzerland. Stoch Environ Res Risk Assess 38, 3737–3754 (2024). https://doi.org/10.1007/s00477-024-02757-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-024-02757-5

Keywords

Profiles

  1. Kaltrina Maloku