Skip to main content

Multiscale investigation of precipitation extremes over Ethiopia and teleconnections to large-scale climate anomalies

Abstract

Ethiopia witnessed tremendous precipitation variability and extremes linked with large-scale climate anomalies. This study investigated the long-term spatiotemporal trends of precipitation extremes, significant change points, and its teleconnection to climate anomalies. We used a daily CHIRPS gridded precipitation dataset of the past four decades covering from 1981 to 2019. Eight extreme precipitation indices are defined here based on Expert Team on Climate Change Detection and Indices guidelines. We used the Mann–Kendall test, Sen's slope estimator, and Pettitt's test to investigate trends of the precipitation change in terms of the magnitude and change point of time series. Wavelet coherence and correlation coefficient are used to identify the relationship between precipitation extremes and climate indices. Our results show a significantly decreasing trend for the Kiremt season (June to Sept) and Belg season (Feb to May) over southeast Ethiopia. The majority of grid points experience a change in time series during 1990 to 2012. Most precipitation extreme indices show an increasing trend over the south and southwest region, except consecutive wet days (CWD), which shows a decreasing trend at similar locations. The multiscale analysis presents strong coherence between precipitation anomaly and Nino 3.4 and IOD over the south and southeast region. Similarly, spatial correlation shows that IOD and Nino 3.4 are positively correlated to R10mm, R25mm, PRCTOT, Rx5day, R95ptot, and R99ptot over south, southwest, and southeast parts of the country. A negative correlation is observed with CDD for similar locations along with NAO climate index for most precipitation extremes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agarwal A, Maheswaran R, Marwan N, Caesar L, Kurths J (2018) Wavelet-based multiscale similarity measure for complex networks. Eur Phys J B. https://doi.org/10.1140/epjb/e2018-90460-6

    Article  Google Scholar 

  2. Agarwal A, Caesar L, Marwan N, Maheswaran R, Merz B, Kurths J (2019) Network-based identification and characterization of teleconnections on different scales. Sci Rep 9. https://doi.org/10.1038/s41598-019-45423-5

  3. Agarwal A, Marwan N, Maheswaran R, Ozturk U, Kurths J, Merz B (2020) Optimal design of hydrometric station networks based on complex network analysis. Hydrol Earth Syst Sci 24(5):2235–2251. https://doi.org/10.5194/hess-24-2235-2020

    Article  Google Scholar 

  4. Aghakouchak A, Chiang F, Huning LS, Love CA, Mallakpour I, Mazdiyasni O, Sadegh M (2020) Climate extremes and compound hazards in a warming world. Annu Rev Earth Planet Sci 48:519–548. https://doi.org/10.1146/annurev-earth-071719-055228

    CAS  Article  Google Scholar 

  5. Awulachew SB, Yilma AD, Loulseged M, Loiskandl W, Ayana M, Alamirew T (2007) Water resources and irrigation development in Ethiopia. International Water Management Institute (IWMI), Colombo, Sri Lanka, 66p. (IWMI Working Paper 123). https://doi.org/10.3910/2009.305

  6. Balzter H, Tate NJ, Kaduk J, Harper D, Page S, Morrison R, Jones P (2015) Multiscale entropy analysis as a method for time-series analysis of climate data. Climate 3(1):227–240. https://doi.org/10.3390/cli3010227

    Article  Google Scholar 

  7. Bayissa Y, Tadesse T, Demisse G, Shiferaw A (2017) Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin. Ethiopia Remote Sens 9(7):1–17. https://doi.org/10.3390/rs9070669

    Article  Google Scholar 

  8. Bekele-Biratu E, Thiaw WM, Korecha D (2018) Sub-seasonal variability of the Belg rains in Ethiopia. Int J Climatol 38(7):2940–2953. https://doi.org/10.1002/joc.5474

    Article  Google Scholar 

  9. Borgomeo E, Vadheim B, Woldeyes FB, Alamirew T, Tamru S, Charles KJ, Walker O (2018) The distributional and multi-sectoral impacts of rainfall shocks: evidence from computable general equilibrium modelling for the awash basin Ethiopia. Ecol Econ 146:621–632. https://doi.org/10.1016/j.ecolecon.2017.11.038

    Article  Google Scholar 

  10. CRED (2019) Natural disasters 2019 Retrieved from https://cred.be/sites/default/files/adsr_2019.pdf

  11. Delage FPD, Power SB (2020) The impact of global warming and the El Niño-Southern oscillation on seasonal precipitation extremes in Australia. Clim Dyn 54(9–10):4367–4377. https://doi.org/10.1007/s00382-020-05235-0

    Article  Google Scholar 

  12. Diro GT, Black E, Grimes DIF (2009) Seasonal forecasting of Ethiopian spring rains. Meteorol Appl 101(February):91–101. https://doi.org/10.1002/met

    Article  Google Scholar 

  13. Diro GT, Grimes DIF, Black E (2011) Teleconnections between Ethiopian summer rainfall and sea surface temperature: part I—observation and modelling. Clim Dyn 37:103–119. https://doi.org/10.1007/s00382-010-0837-8

  14. Dubache G, Ogwang BA, Ongoma V, Towfiqul Islam ARM (2019) The effect of Indian Ocean on Ethiopian seasonal rainfall. Meteorol Atmos Phys 131(6):1753–1761. https://doi.org/10.1007/s00703-019-00667-8

    Article  Google Scholar 

  15. Ekhtiari N, Agarwal A, Marwan N, Donner RV (2019) Disentangling the multiscale effects of sea-surface temperatures on global precipitation: a coupled networks approach. Chaos 29(6):063116

    Article  Google Scholar 

  16. van Engelen A, Klein Tank A, van der Schrier G, Klok L (2008) European Climate Assessment & Dataset (ECA&D), Report 2008, 68. Retrieved from https://docplayer.net/62188068-European-climate-assessment-dataset-eca-d-report-2008-towards-an-operational-system-for-assessing-observed-changes-in-climate-extremes.html

  17. Field CB, Barros V, Stocker TF, Dahe Q, Dokken DJ, Ebi KL, Midgley PM (2011) Special report of the intergovernmental panel on climate change edited. Managing the risks of extreme events and disasters to advance climate change adaptation special

  18. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Michaelsen J (2015) The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Scientific Data 2:1–21. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  19. Funk C, Harrison L, Shukla S, Pomposi C, Galu G, Korecha D, Verdin J (2018) Examining the role of unusually warm Indo-Pacific sea-surface temperatures in recent African droughts. Q J R Meteorol Soc 144(January):360–383. https://doi.org/10.1002/qj.3266

    Article  Google Scholar 

  20. Gebrechorkos SH, Hülsmann S, Bernhofer C (2019) Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. Int J Climatol 39(1):18–30. https://doi.org/10.1002/joc.5777

    Article  Google Scholar 

  21. Gebregiorgis D, Rayner D, Linderholm HW (2019) Does the IOD independently influence seasonal monsoon patterns in Northern Ethiopia? Atmosphere. https://doi.org/10.3390/atmos10080432

    Article  Google Scholar 

  22. Gissila T, Black E, Grimes DIF, Slingo JM (2004) Seasonal forecasting of the Ethiopian summer rains. Int J Climatol 24(11):1345–1358. https://doi.org/10.1002/joc.1078

    Article  Google Scholar 

  23. Gonçalves MF, Blanco CJC, dos Santos VC, dos Oliveira LLS (2018) Homogenous regions and rainfall probability models considering El Niño and La Niña in the State of Pará in the Amazon. Acta Scientiarum Technol. https://doi.org/10.4025/actascitechnol.v40i1.37742

    Article  Google Scholar 

  24. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566. https://doi.org/10.5194/npg-11-561-2004

    Article  Google Scholar 

  25. Gummadi S, Rao KPC, Seid J, Legesse G, Kadiyala MDM, Takele R, Whitbread A (2018) Spatio-temporal variability and trends of precipitation and extreme rainfall events in Ethiopia in 1980–2010. Theoret Appl Climatol 134(3–4):1315–1328. https://doi.org/10.1007/s00704-017-2340-1

    Article  Google Scholar 

  26. Gupta V, Jain MK (2020) Impact of ENSO, global warming, and land surface elevation on extreme precipitation in India. J Hydrol Eng ASCE 25(1):05019032. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001872

    Article  Google Scholar 

  27. Gupta V, Jain MK (2021) Unravelling the teleconnections between ENSO and dry/wet conditions over India using nonlinear granger causality. J Atmospheric Res 247:105168. https://doi.org/10.1016/j.atmosres.2020.105168

    Article  Google Scholar 

  28. Gupta V, Singh V, Jain MK (2020) Assessment of precipitation extremes in India during the 21st century under SSP1–1.9 mitigation scenarios of CMIP6 GCMs. J Hydrol 590:125422. https://doi.org/10.1016/j.jhydrol.2020.125422

    Article  Google Scholar 

  29. Hudgins L, Huang J (1996) Bivariate wavelet analysis of Asia Monsoon and ENSO. Adv Atmos Sci 13(3):299–312. https://doi.org/10.1007/BF02656848

    Article  Google Scholar 

  30. IPCC (2014) Climate change 2014 part A: global and sectoral aspects Climate change 2014: impacts, adaptation, and vulnerability. Retrieved from papers2://publication/uuid/B8BF5043-C873–4AFD-97F9-A630782E590D

  31. Jehanzaib M, Kim TW, Gu L, Chen J, Yin J, Xu CY, Nanjundiah RS (2018) Persistent multiscale fluctuations shift European hydroclimate to its millennial boundaries. Nat Commun 9(1):1–12. https://doi.org/10.1038/s41467-018-04207-7

    CAS  Article  Google Scholar 

  32. Jury MR, Funk C (2013) Climatic trends over Ethiopia: regional signals and drivers. Int J Climatol 33(8):1924–1935. https://doi.org/10.1002/joc.3560

    Article  Google Scholar 

  33. Kendall MG (1948) Rank correlation methods

  34. Korecha D, Barnston AG (2007) Predictability of June-September rainfall in Ethiopia. Mon Weather Rev 135(2):628–650. https://doi.org/10.1175/MWR3304.1

    Article  Google Scholar 

  35. Kurths J, Agarwal A, Shukla R, Marwan N, Rathinasamy M, Caesar L, Krishnan R, Merz B (2019) Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach. Nonlinear Process Geophys 26:251–266. https://doi.org/10.5194/npg-26-251-2019

  36. Lakshmanan V, Gilleland E (2015) Machine learning and data mining approaches to climate science. Mach Learn Data Min Approaches Climate Sci. https://doi.org/10.1007/978-3-319-17220-0

    Article  Google Scholar 

  37. Maheswaran R, Khosa R (2012) Comparative study of different wavelets for hydrologic forecasting. Comput Geosci 46:284–295. https://doi.org/10.1016/j.cageo.2011.12.015

  38. Maity R, Kumar DN, Nanjundiah RS (2007) Review of hydroclimatic teleconnection between hydrologic variables and large-scale atmospheric circulation patterns with indian perspective. ISH J Hydraulic Eng 13(1):77–92. https://doi.org/10.1080/09715010.2007.10514859

    CAS  Article  Google Scholar 

  39. Mann HB (1945) Nonparametric tests against trend Author(s): HB Mann Published by: The econometric society stable URL: Econometrica, 13(3), 245–259 Retrieved from http://www.jstor.com/stable/1907187

  40. McHugh MJ, Rogers JC (2001) North Atlantic oscillation influence on precipitation variability around the Southeast African convergence zone. J Clim 14(17):3631–3642. https://doi.org/10.1175/1520-0442

    Article  Google Scholar 

  41. MoWE (2018) Scaling - up renewable energy program Ethiopia investment plan Ministry of water and energy, federal democratic Republic of Ethiopia, Addis Ababa, Ethiopia

  42. Munoz-Díaz D, Rodrigo FS (2004) Spatio-temporal patterns of seasonal rainfall in Spain using cluster and principal component analysis: comparison. Ann Geophys 22(5):1435–1448. https://doi.org/10.5194/angeo-22-1435-2004

    Article  Google Scholar 

  43. Murendo C, Keil A, Zeller M (2011) Drought impacts and related risk management by smallholder farmers in developing countries: evidence from Awash River Basin. Ethiopia Risk Manag 13(4):247–263. https://doi.org/10.1057/rm.2011.17

    Article  Google Scholar 

  44. Murtagh F, Contreras P (2017) Algorithms for hierarchical clustering: an overview, II. Wiley Interdiscip Rev Data Min Knowl Discov 7(6):1–16. https://doi.org/10.1002/widm.1219

    Article  Google Scholar 

  45. Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? Journal of Classif 160(1):233–238. https://doi.org/10.1128/jb.160.1.233-238.1984

    Article  Google Scholar 

  46. Musie M, Sen S, Srivastava P (2019) Comparison and evaluation of gridded precipitation datasets for streamflow simulation in data scarce watersheds of Ethiopia. J Hydrol 579(August):124168. https://doi.org/10.1016/j.jhydrol.2019.124168

    Article  Google Scholar 

  47. National Meteorological Services Agency, A. A. (Ethiopia) (1996) Climatic and agroclimatic resources of Ethiopia. NMSA Meteorological Research Report Series (Ethiopia) NMSA

  48. Nguyen PL, Min SK, Kim YH (2020) Combined impacts of the El Niño-Southern oscillation and Pacific Decadal oscillation on global droughts assessed using the standardized precipitation evapotranspiration index. Int J Climatol. https://doi.org/10.1002/joc.6796

    Article  Google Scholar 

  49. Pettitt AN (1979) A non-parametric approach to the change-point problem published by: Wiley for the royal statistical society a non-parametric approach to the change-point problem. J R Stat Soc Series C (Appl Stat) 28(2):126–135

    Google Scholar 

  50. Pohlert T (2020) Trend: non-parametric trend tests and change-point detection, 1–18 Retrieved from https://cran.r-project.org/package=trend%0

  51. Rathinasamy M, Agarwal A, Sivakumar B, Marwan N, Kurths J (2019) Wavelet analysis of precipitation extremes over India and teleconnections to climate indices. Stoch Env Res Risk Assess 33(11–12):2053–2069. https://doi.org/10.1007/s00477-019-01738-3

    Article  Google Scholar 

  52. Segele ZT, Leslie LM, Lamb PJ (2009) Evaluation and adaptation of a regional climate model for the Horn of Africa: rainfall climatology and interannual variability. Int J Climatol 29:47–65. https://doi.org/10.1002/joc.1681

  53. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63(324):1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  54. Sharghi E, Nourani V, Soleimani S, Sadikoglu F (2018) Application of different clustering approaches to hydroclimatological catchment regionalization in mountainous regions, a case study in Utah State. J Mt Sci 15(3):461–484. https://doi.org/10.1007/s11629-017-4454-4

    Article  Google Scholar 

  55. Steinhaeuser K, Ganguly AR, Chawla NV (2012) Multivariate and multiscale dependence in the global climate system revealed through complex networks https://doi.org/10.1007/s00382-011-1135-9

  56. Tank AK, Zwiers FW, Zhang X (2009) WMO guidelines on analysis of extremes in a changing climate in support of informed decisions Climate Data Monitor (WCDMP-No. 72), 52 Retrieved from File Attachment

  57. Tian W, Zheng Y, Yang R, Ji S, Wang J (2014) A survey on clustering based meteorological data mining. Int J Grid Distrib Comput 7(6):229–240. https://doi.org/10.14257/ijgdc.2014.7.6.19

    Article  Google Scholar 

  58. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bulletin Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  59. Viste E, Korecha D, Sorteberg A (2013) Recent drought and precipitation tendencies in Ethiopia. Theor Appl Climatol 112:535–551. https://doi.org/10.1007/s00704-012-0746-3

  60. Wagesho N, Goel NK, Jain MK (2013) Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrol Sci J 58(2):354–373. https://doi.org/10.1080/02626667.2012.754543

    Article  Google Scholar 

  61. Wang B, Huang F, Wu Z, Yang J, Fu X (2009) Dynamics of atmospheres and oceans multiscale climate variability of the South China sea monsoon: a review, 47, 15–37 https://doi.org/10.1016/j.dynatmoce.2008.09.004

  62. Ward JH (1963) Hierarchical grouping to optimize an objective function J Am Stat Assoc 58(301), 236–244 Retrieved from https://doi.org/10.2307/2282967

  63. Zewdu TS, Lamb, PJ and Leslie, LM (2008) Large-scale atmospheric circulation and global sea surface temperature associations with Horn of Africa June–September rainfall. Int J Climatol 29(8):1075–1100. https://doi.org/10.1002/joc.1751

Download references

Funding

TKB acknowledges the support of the Ethiopian Government for sponsoring him for higher studies at IIT Roorkee under the Study in India Program. AA acknowledges the joint funding support from the University Grant Commission (UGC) and DAAD under the Indo-German Partnership in Higher Education (IGP) framework.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Jain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest/competing interests.

Data availability

This study used an open-source high spatial resolution (0.050 × 0.050) gridded precipitation data set of Climate Hazards Group Infrared Precipitation Stations (CHIRPS).

Code availability

The code used in this study may be obtained from the authors upon a reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beyene, T.K., Jain, M.K., Yadav, B.K. et al. Multiscale investigation of precipitation extremes over Ethiopia and teleconnections to large-scale climate anomalies. Stoch Environ Res Risk Assess (2021). https://doi.org/10.1007/s00477-021-02120-y

Download citation

Keywords

  • Ethiopia
  • Precipitation extremes
  • Trend analysis
  • Climate index
  • Wavelet coherence