Skip to main content

Development of new machine learning model for streamflow prediction: case studies in Pakistan

Abstract

For accurate estimation of streamflow of a mountainous river basin, a novel hybrid method is developed in this study, where gradient-based optimization (GBO) algorithm is employed to adjust adaptive neuro-fuzzy system's (ANFIS) hyperparameters. Two key mountainous basins in Pakistan, namely, Gilgit and Astore basins, were selected to show the model's effectiveness in predicting monthly streamflows using temperature and antecedent streamflow data. Several benchmark methods for optimizing ANFIS parameters were compared, which includes particle swarm optimization (PSO), genetic algorithm (GA), differential evolution (DE), ant colony optimization (ACO) and grey wolf optimization (GWO). The GBO algorithm enhanced ANFIS prediction accuracy more than the other benchmark methods. ANFIS-GBO improved the prediction accuracy of other benchmark algorithms hybrid ANFIS models by about 28–29.5, 28–26.9, 28.7−40.4, 11.2–20.1 and 10.4–20.9% with respect to root mean square error (RMSE), normalized RMSE, mean absolute error, determination coefficient and Nash Sutcliffe Efficiency in the studied basins, respectively. The ANFIS-GBO model also improved the peak streamflow prediction accuracy of ANFIS-GWO, ANFIS-PSO, ANFIS-ACO, ANFIS-GA and ANFIS-DE by about 4–23.7, 23.1–32.4, 15.4–41.6, 18.9–49.4 and 17.2–52.3%, respectively. The ANFIS-GBO also showed higher strength than the other models in estimating streamflows from nearby station data as input. Performance comparison of GBO based ANFIS hybridized model with standalone ANFIS model showed that GBO successfully enhanced the prediction accuracy of ANFIS model by optimal tuning of its parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Abbasi H, Afshar A, Jalali MR (2010) Ant-colony-based simulation-optimization modeling for the design of a forced water pipeline system considering the effects of dynamic pressures. J Hydroinformatics 12:212–224. https://doi.org/10.2166/hydro.2009.147

    Article  Google Scholar 

  2. Adnan RM, Yuan X, Kisi O, Adnan M, Mehmood A (2018) Stream flow forecasting of poorly gauged mountainous watershed by least square support vector machine, fuzzy genetic algorithm and M5 model tree using climatic data from nearby station. Water Resour Manag 32(14):4469–4486

    Article  Google Scholar 

  3. Adnan RM, Liang Z, Trajkovic S, Zounemat-Kermani M, Li B, Kisi O (2019) Daily streamflow prediction using optimally pruned extreme learning machine. J Hydrol 577:123981

    Article  Google Scholar 

  4. Adnan RM, Liang Z, Heddam S, Zounemat-Kermani M, Kisi O, Li B (2020) Daily streamflow prediction using optimally pruned extreme learning machine. J Hydrol 577:123981. https://doi.org/10.1016/j.jhydrol.2019.123981

    Article  Google Scholar 

  5. Adnan RM, Liang Z, Parmar KS et al (2021) Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data. Neural Comput Applic 33:2853–2871. https://doi.org/10.1007/s00521-020-05164-3

    Article  Google Scholar 

  6. Afshar A, Massoumi F, Afshar A, Mariño MA (2015) State of the art review of ant colony optimization applications in water resource management. Water Resour Manag 29:3891–3904. https://doi.org/10.1007/s11269-015-1016-9

    Article  Google Scholar 

  7. Aghelpour P, Mohammadi B, Biazar SM, Kisi O, Sourmirinezhad Z (2020b) A theoretical approach for forecasting different types of drought simultaneously, using entropy theory and machine-learning methods. ISPRS Int J Geo Inf 9(12):701

    Article  Google Scholar 

  8. Aghelpour P, Kisi O, Varshavian V (2021b) Multivariate drought forecasting in short-and long-term horizons using MSPI and data-driven approaches. J Hydrol Eng 26(4):04021006

    Article  Google Scholar 

  9. Aghelpour P, Singh VP, Varshavian V (2021c) Time series prediction of seasonal precipitation in Iran, using data-driven models: a comparison under different climatic conditions. Arab J Geosci 14(7):1–14

    Article  Google Scholar 

  10. Aghelpour, P, Bahrami-Pichaghchi H, Kisi O (2020a) Comparison of three different bio-inspired algorithms to improve ability of neuro fuzzy approach in prediction of agricultural drought, based on three different indexes. Comput Electronics Agriculture 170:105279.

  11. Aghelpour P, Bahrami-Pichaghchi H, Varshavian V (2021a) Hydrological drought forecasting using multi-scalar streamflow drought index, stochastic models and machine learning approaches, in northern Iran. Stochastic Environ Res Risk Assessment, 1–21.

  12. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci (ny) 540:131–159. https://doi.org/10.1016/j.ins.2020.06.037

    Article  Google Scholar 

  13. Alhindawi R, Abu Nahleh Y, Kumar A, Shiwakoti N (2019) Application of a adaptive neuro-fuzzy technique for projection of the greenhouse gas emissions from road transportation. Sustain 11. https://doi.org/10.3390/su11226346

  14. Alizamir M, Kisi O, Muhammad Adnan R,, Kuriqi A (2020) Modelling reference evapotranspiration by combining neuro-fuzzy and evolutionary strategies. Acta Geophys 68:1113–1126

    Article  Google Scholar 

  15. Babanezhad M, Behroyan I, Nakhjiri AT, Marjani A, Heydarinasab A, Shirazian S (2020) Liquid temperature prediction in bubbly flow using ant colony optimization algorithm in the fuzzy inference system as a trainer. Sci Rep 10:21884. https://doi.org/10.1038/s41598-020-78751-y

    CAS  Article  Google Scholar 

  16. Babu CN, Reddy BE (2014) A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl Soft Comput 23:27–38. https://doi.org/10.1016/j.asoc.2014.05.028

    Article  Google Scholar 

  17. Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B (2014) Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural networks and wavelet support vector regression models. J Hydrol 508:418–429. https://doi.org/10.1016/j.jhydrol.2013.10.052

    Article  Google Scholar 

  18. Belvederesi C, Dominic JA, Hassan QK, Gupta A, Achari G (2020) Predicting river flow using an AI-based sequential adaptive neuro-fuzzy inference system. Water (switzerland) 12. https://doi.org/10.3390/w12061622

  19. Bi W, Xu Y, Wang H (2020) Comparison of searching behaviour of three evolutionary algorithms applied to water distribution system design optimization. Water (switzerland) 12:1–14. https://doi.org/10.3390/w12030695

    Article  Google Scholar 

  20. Chen W, Panahi M, Khosravi K, Pourghasemi HR, Rezaie F, Parvinnezhad D (2019) Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. J Hydrol 572:435–448. https://doi.org/10.1016/j.jhydrol.2019.03.013

    Article  Google Scholar 

  21. Cheng C-T, Zhao M-Y, Chau KW, Wu X-Y (2006) Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. J Hydrol 316:129–140

    Article  Google Scholar 

  22. Cheng M, Fang F, Kinouchi T, et al (2020) Long lead-time daily and monthly streamflow forecasting using machine learning methods. J Hydrol 590:125376

  23. Deb S, Abdelminaam DS, Said M, Houssein EH (2021) Recent methodology-based gradient-based optimizer for economic load dispatch problem. IEEE Access 9:44322–44338

    Article  Google Scholar 

  24. Dehghani M, Riahi-Madvar H, Hooshyaripor F, Mosavi A, Shamshirband S, Zavadskas EK, Chau K, Wing (2019) Prediction of hydropower generation using Grey wolf optimization adaptive neuro-fuzzy inference system. Energies 12:1–20. https://doi.org/10.3390/en12020289

    Article  Google Scholar 

  25. Dursun OF, Kaya N, Firat M (2012) Estimating discharge coefficient of semi-elliptical side weir using ANFIS. J Hydrol 426–427:55–62. https://doi.org/10.1016/j.jhydrol.2012.01.010

    Article  Google Scholar 

  26. Eberhart, R., Kennedy, J., 1995. New optimizer using particle swarm theory. Proc. Int. Symp. Micro Mach. Hum. Sci. 39–43. https://doi.org/10.1109/mhs.1995.494215

  27. Ehteram M, Afan HA, Dianatikhah M, Ahmed AN, Fai CM, Hossain MS, Allawi MF, Elshafie A (2019) Assessing the predictability of an improved ANFIS model for monthly streamflow using lagged climate indices as predictors. Water (switzerland) 11. https://doi.org/10.3390/w11061130

  28. Erdal HI, Karakurt O (2013) Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms. J Hydrol 477:119–128. https://doi.org/10.1016/j.jhydrol.2012.11.015

    Article  Google Scholar 

  29. Gao ZM, Zhao J (2019) An improved grey Wolf optimization algorithm with variable weights. Comput Intell Neurosci. https://doi.org/10.1155/2019/2981282

  30. Georgioudakis M, Plevris V (2020) A comparative study of differential evolution variants in constrained structural optimization. Front Built Environ 6:1–14. https://doi.org/10.3389/fbuil.2020.00102

    Article  Google Scholar 

  31. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc, USA

    Google Scholar 

  32. Guo J, Zhou J, Qin H et al (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38:13073–13081. https://doi.org/10.1016/j.eswa.2011.04.114

    Article  Google Scholar 

  33. Hadi SJ, Tombul M (2018) Forecasting daily streamflow for basins with different physical characteristics through data-driven methods. Water Resour Manag 32:3405–3422. https://doi.org/10.1007/s11269-018-1998-1

    Article  Google Scholar 

  34. Hassan MH, Kamel S, El-Dabah MA, Rezk H (2021a) A novel solution methodology based on a modified gradient-based optimizer for parameter estimation of photovoltaic models. Electronics 10(4):472

    Article  Google Scholar 

  35. Hassan MH, Houssein EH, Mahdy MA, Kamel S (2021b). An improved manta ray foraging optimizer for cost-effective emission dispatch problems. Eng Appl Artif Intell 100:104155.

  36. Himanshu N, Kumar V, Burman A, Maity D, Gordan B (2020) Grey wolf optimization approach for searching critical failure surface in soil slopes. Eng Comput. https://doi.org/10.1007/s00366-019-00927-6

    Article  Google Scholar 

  37. Ismaeel AA, Houssein EH, Oliva D, Said M (2021) Gradient-based optimizer for parameter extraction in photovoltaic models. IEEE Access 9:13403–13416

    Article  Google Scholar 

  38. Jiang Y, Luo Q, Wei Y, Abualigah L, Zhou Y (2021) An efficient binary Gradient-based optimizer for feature selection. Math Biosci Eng MBE 18(4):3813–3854

    Article  Google Scholar 

  39. Keskin ME, Taylan D, Terzi Ö (2006) Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrol Sci J 51:588–598. https://doi.org/10.1623/hysj.51.4.588

    Article  Google Scholar 

  40. Khashei M, Bijari M (2010) An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst Appl 37:479–489. https://doi.org/10.1016/j.eswa.2009.05.044

    Article  Google Scholar 

  41. Kim J-W, Pachepsky YA (2010) Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. J Hydrol 394:305–314

    Article  Google Scholar 

  42. Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140. https://doi.org/10.1016/j.jhydrol.2010.12.041

    Article  Google Scholar 

  43. Kisi O, Yaseen ZM (2019) The potential of hybrid evolutionary fuzzy intelligence model for suspended sediment concentration prediction. CATENA 174:11–23. https://doi.org/10.1016/j.catena.2018.10.047

    Article  Google Scholar 

  44. Kisi O, Shiri J, Karimi S, Adnan RM (2018) Three different adaptive neuro fuzzy computing techniques for forecasting long-period daily streamflows. In: Big data in engineering applications. Springer, Singapore, pp 303–321

    Chapter  Google Scholar 

  45. Kisi O, Choubin B, Deo RC, Yaseen ZM (2019) Incorporating synoptic-scale climate signals for streamflow modelling over the Mediterranean region using machine learning models. Hydrol Sci J

  46. Kusagur A, Kodad SF, Ram BVS (2010) Modeling, design and simulation of an adaptive Neuro-Fuzzy Inference System (ANFIS) for speed control of induction motor. Int J Comput Appl 6:29–44. https://doi.org/10.5120/1123-1472

    Article  Google Scholar 

  47. Madsen KM, Perry AE (2010) Using genetic algorithms on groundwater modeling problems in a consulting setting. In: Proceedings of annual international conference on soils, sediments, water energy, vol 15, pp 103–114

  48. Maier HR, Simpson AR, Foong WK, Phang KY, Seah HY, Tan CL (2004) Ant colony optimization for the design of water distribution systems. J Water Resour Plan Manag 111. https://doi.org/10.1061/40569(2001)375

  49. Masselot P, Dabo-Niang S, Chebana F, Ouarda TBMJ (2016) Streamflow forecasting using functional regression. J Hydrol. https://doi.org/10.1016/j.jhydrol.2016.04.048

    Article  Google Scholar 

  50. Mehr Da, Kahya E, Şahin a, Nazemosadat MJ (2014) Successive-station monthly streamflow prediction using different artificial neural network algorithms. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-014-0613-0

  51. Meng E, Huang S, Huang Q et al (2019) A robust method for non-stationary streamflow prediction based on improved EMD-SVM model. J Hydrol. https://doi.org/10.1016/j.jhydrol.2018.11.015

    Article  Google Scholar 

  52. Meshram SG, Ghorbani MA, Shamshirband S et al (2019) River flow prediction using hybrid PSOGSA algorithm based on feed-forward neural network. Soft Comput 23:10429–10438. https://doi.org/10.1007/s00500-018-3598-7

    Article  Google Scholar 

  53. Meshram SG, Meshram C, Santos CAG, Benzougagh B, Khedher K M (2021) Streamflow prediction based on artificial intelligence techniques. Iran J Sci Technol Trans Civil Eng, pp 1–11.

  54. Moeini R, Afshar MH (2017) Arc Based Ant Colony Optimization Algorithm for optimal design of gravitational sewer networks. Ain Shams Eng J 8:207–223. https://doi.org/10.1016/j.asej.2016.03.003

    Article  Google Scholar 

  55. Montalvo I, Izquierdo J, Pérez R, Tung MM (2008) Particle Swarm Optimization applied to the design of water supply systems. Comput Math with Appl 56:769–776. https://doi.org/10.1016/j.camwa.2008.02.006

    Article  Google Scholar 

  56. Mosavi A, Ozturk P, Chau KW (2018) Flood prediction using machine learning models: Literature review. Water (Switzerland)

  57. Naderloo L, Alimardani R, Omid M, Sarmadian F, Javadikia P, Torabi MY, Alimardani F (2012) Application of ANFIS to predict crop yield based on different energy inputs. Meas J Int Meas Confed 45:1406–1413. https://doi.org/10.1016/j.measurement.2012.03.025

    Article  Google Scholar 

  58. Ni L, Wang D, Wu J, et al (2020) Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model. J Hydrol, 124901

  59. Nilashi M, Cavallaro F, Mardani A, Zavadskas EK, Samad S, Ibrahim O (2018) Measuring country sustainability performance using ensembles of neuro-fuzzy technique. Sustain 10:1–20. https://doi.org/10.3390/su10082707

    Article  Google Scholar 

  60. Niu W, jing, Feng Z kai, Zeng M, et al (2019) Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2019.105589

  61. Noori N, Kalin L (2016) Coupling SWAT and ANN models for enhanced daily streamflow prediction. J Hydrol 533:141–151

    Article  Google Scholar 

  62. Nourani V, Komasi M (2013) A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process. J Hydrol 490:41–55. https://doi.org/10.1016/j.jhydrol.2013.03.024

    Article  Google Scholar 

  63. Peng T, Zhou J, Zhang C, Fu W (2017) Streamflow forecasting using empirical wavelet transform and artificial neural networks. Water (switzerland). https://doi.org/10.3390/w9060406

    Article  Google Scholar 

  64. Petkovi B, Petkovi D, Kuzman B, Milovan M, Wakil K (2020) Neuro-fuzzy estimation of reference crop evapotranspiration by neuro fuzzy logic based on weather conditions. Comput Electron Agric, 173. https://doi.org/10.1016/j.compag.2020.105358

  65. Pitalúa-Díaz N, Arellano-Valmaña F, Ruz-Hernandez JA, Matsumoto Y, Alazki H, Herrera-López EJ, Hinojosa-Palafox JF, García-Juárez A, Pérez-Enciso RA, Velázquez-Contreras EF (2019) An ANFIS-based modeling comparison study for photovoltaic power at different geographical places in Mexico. Energies 12:1–16. https://doi.org/10.3390/en12142662

    Article  Google Scholar 

  66. Polykretis C, Chalkias C, Ferentinou M (2019) Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area. Bull Eng Geol Environ 78:1173–1187. https://doi.org/10.1007/s10064-017-1125-1

    Article  Google Scholar 

  67. Premkumar M, Jangir P, Ramakrishnan C, Nalinipriya G, Alhelou HH, Kumar BS (2021) Identification of solar photovoltaic model parameters using an improved gradient-based optimization algorithm with chaotic drifts. IEEE Access 9:62347–62379

    Article  Google Scholar 

  68. Ragettli S, Cortés G, McPhee J, Pellicciotti F (2014) An evaluation of approaches for modelling hydrological processes in high-elevation, glacierized Andean watersheds. Hydrol Process 28:5674–5695

    Article  Google Scholar 

  69. Rahmani-Rezaeieh A, Mohammadi M, Danandeh Mehr A (2020) Ensemble gene expression programming: a new approach for evolution of parsimonious streamflow forecasting model. Theor Appl Climatol. https://doi.org/10.1007/s00704-019-02982-x

    Article  Google Scholar 

  70. Rasouli K, Hsieh WW, Cannon AJ (2012) Daily streamflow forecasting by machine learning methods with weather and climate inputs. J Hydrol 414–415:284–293. https://doi.org/10.1016/j.jhydrol.2011.10.039

    Article  Google Scholar 

  71. Riahi-Madvar H, Dehghani M, Memarzadeh R, Gharabaghi B (2021) Short to long-term forecasting of river flows by heuristic optimization algorithms hybridized with ANFIS. Water Resour Manage 35(4):1149–1166

    Article  Google Scholar 

  72. Rout UK, Sahu RK, Panda S (2013) Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system. Ain Shams Eng J 4:409–421. https://doi.org/10.1016/j.asej.2012.10.010

    Article  Google Scholar 

  73. Salgotra R, Singh U, Sharma S (2020) On the improvement in grey wolf optimization, Neural Computing and Applications. Springer, London. https://doi.org/10.1007/s00521-019-04456-7

  74. Samanataray S, Sahoo A (2021) A Comparative Study on Prediction of Monthly Streamflow Using Hybrid ANFIS-PSO Approaches. KSCE J Civil Eng, 1–12.

  75. Sanikhani H, Kisi O, Maroufpoor E, Yaseen ZM (2018) Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios. Theor Appl Climatol, 1–14. https://doi.org/10.1007/s00704-018-2390-z

  76. Saremi S, Mirjalili SZ, Mirjalili SM (2015) Evolutionary population dynamics and grey wolf optimizer. Neural Comput Appl 26:1257–1263. https://doi.org/10.1007/s00521-014-1806-7

    Article  Google Scholar 

  77. Savic AD, Walters GA, Atkinson RM, Smith MR (1999) Genetic algorithm optimization of large water distribution system expansion. Meas Control 32:104–109. https://doi.org/10.1177/002029409903200403

    Article  Google Scholar 

  78. Shao Q, Wong H, Li M, Ip W-C (2009) Streamflow forecasting using functional-coefficient time series model with periodic variation. J Hydrol 368:88–95

    Article  Google Scholar 

  79. Sharifi H, Roozbahani A, Shahdany SMH (2021) Evaluating the performance of Agricultural Water Distribution Systems using FIS, ANN and ANFIS intelligent models. Water Resour Manage 35(6):1797–1816

    Article  Google Scholar 

  80. Shortridge JE, Guikema SD, Zaitchik BF (2016) Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrol Earth Syst Sci 20:2611–2628. https://doi.org/10.5194/hess-20-2611-2016

    Article  Google Scholar 

  81. Spiliotis M (2014) A Particle Swarm Optimization (PSO) heuristic for water distribution system analysis. Water Util J 8:47–56

    Google Scholar 

  82. Talei A, Chua LHC, Wong TSW (2010) Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling. J Hydrol 391:248–262. https://doi.org/10.1016/j.jhydrol.2010.07.023

    Article  Google Scholar 

  83. Tao H, Ewees AA, Al-Sulttani AO et al (2021) Global solar radiation prediction over North Dakota using air temperature: Development of novel hybrid intelligence model. Energy Rep 7:136–157. https://doi.org/10.1016/j.egyr.2020.11.033

    Article  Google Scholar 

  84. Tjalling JY (1995) Historical development of the newton-raphson method. Soc Ind Appl Math 37:31–551

    Google Scholar 

  85. Toǧan V, Daloǧlu AT (2006) Optimization of 3d trusses with adaptive approach in genetic algorithms. Eng Struct 28:1019–1027. https://doi.org/10.1016/j.engstruct.2005.11.007

    Article  Google Scholar 

  86. Valipour M (2015) Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol Appl n/a-n/a. https://doi.org/10.1002/met.1491

    Article  Google Scholar 

  87. Vericat F, Stoico CO, Carlevaro CM, Renzi DG (2011) Genetic algorithm for the pair distribution function of the electron gas. Interdiscip Sci Comput Life Sci 3:283–289. https://doi.org/10.1007/s12539-011-0108-3

    Article  Google Scholar 

  88. Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22:387–408. https://doi.org/10.1007/s00500-016-2474-6

    Article  Google Scholar 

  89. Wang H, Bai Y, Li C, Guo Z, Zhang J (2019a) Time series prediction model of grey wolf optimized echo state network. Data Sci J 18:1–11. https://doi.org/10.5334/dsj-2019-016

    Article  Google Scholar 

  90. Wang L, Li X, Ma C, Bai Y (2019b) Improving the prediction accuracy of monthly streamflow using a data-driven model based on a double-processing strategy. J Hydrol 573:733–745

    Article  Google Scholar 

  91. Wang Y, Yuan Y, Pan Y, Fan Z (2020) Modeling daily and monthly water quality indicators in a canal using a hybridwavelet-based support vector regression structure. Water (switzerland) 12. https://doi.org/10.3390/w12051476

  92. Wang W (2006) Stochasticity, nonlinearity and forecasting of streamflow processes. Ios Press, Amsterdam

  93. Wilberforce T, Olabi AG (2020) Performance prediction of proton exchange membrane fuel cells (PEMFC) using adaptive neuro inference system (ANFIS). Sustain 12. https://doi.org/10.3390/su12124952

  94. Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389:146–167. https://doi.org/10.1016/j.jhydrol.2010.05.040

    Article  Google Scholar 

  95. Yaseen ZM, Allawi MF, Yousif AA et al (2018a) Non-tuned machine learning approach for hydrological time series forecasting. Neural Comput Appl 30:1479–1491. https://doi.org/10.1007/s00521-016-2763-0

    Article  Google Scholar 

  96. Yaseen ZM, Ramal MM, Diop L et al (2018b) Hybrid adaptive Neuro-Fuzzy models for Water Quality Index estimation. Water Resour Manag 32:2227–2245. https://doi.org/10.1007/s11269-018-1915-7

    Article  Google Scholar 

  97. Yaseen ZM, Sulaiman SO, Deo RC, Chau K-W (2018c) An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction. J Hydrol 569:387–408. https://doi.org/10.1016/j.jhydrol.2018.11.069

    Article  Google Scholar 

  98. Yuan X, Chen C, Lei X, Yuan Y, Adnan RM (2018) Monthly runoff forecasting based on LSTM–ALO model. Stoch Environ Res Risk Assess 32(8):2199–2212

    Article  Google Scholar 

  99. Yurekli K, Kurunc A, Ozturk F (2005) Application of linear stochastic models to monthly flow data of Kelkit Stream. Ecol Modell 183:67–75

    Article  Google Scholar 

  100. Zheng YJ, Xu XL, Ling HF, Chen SY (2015) A hybrid fireworks optimization method with differential evolution operators. Neurocomputing 148:75–82

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ozgur Kisi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adnan, R.M., Mostafa, R.R., Elbeltagi, A. et al. Development of new machine learning model for streamflow prediction: case studies in Pakistan. Stoch Environ Res Risk Assess (2021). https://doi.org/10.1007/s00477-021-02111-z

Download citation

Keywords

  • Streamflow prediction
  • Gradient-based optimization
  • Differential evolution
  • Ant colony optimization
  • Particle swarm optimization
  • Genetic algorithm
  • Grey wolf optimization