Skip to main content

Advertisement

Log in

Characterizing the carbon dioxide absorption process of ionic liquids by an entropic method

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The reduction of CO2 emissions is greatly needed in the context of global warming. Among all technologies for reducing CO2 concentrations, the capture of CO2 with ionic liquids is a good candidate, especially in industry. In this study, a mathematical expression for characterizing the temporal evolution of the CO2 absorption amount of an ionic liquid is derived using the probability method based on two entropy functions: Shannon entropy and general index entropy. Both the Shannon entropy and general index entropy lead to the same entropic expression, which can model the CO2 absorption process as the absorption time advances from null to infinity. Its accuracy is validated by comparison with ten experimental datasets with a high average correlation coefficient value of 0.983, a low relative bias value of 0.054 and a low relative root mean square error value of 0.134. Moreover, the proposed maximum CO2 absorption capacity in the entropic model is presented to be a function of some factors, including the type of ionic liquid, temperature, gas flow rate, and water content. This derived entropic model has a simple mathematical form, showing its potential to predict the temporal variation in the CO2 absorption amount under some conditions of interest as long as the type of ionic liquid, temperature, gas inflow rate and water content are provided from limited datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ahmady A, Hashim MA, Aroua MK (2011) Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilib 309(1):76–82

    Article  CAS  Google Scholar 

  • Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 captured by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927

    Article  CAS  Google Scholar 

  • Blanchard LA, Hancu D, Beckman E, Brennecke J (1999) Green processing usingionic liquids and CO2. Nature 399:28–29

    Article  Google Scholar 

  • Chen Y, Hu H (2017) Carbon dioxide capture by diethylenetriamine hydrobromide in nonaqueous systems and phase-change formation. Energy Fuels 31:5363–5375

    Article  CAS  Google Scholar 

  • Chen L, Singh VP (2018) Entropy-based derivation of generalized distributions for hydro-meteorological frequency analysis. J Hydrol 557:699–712

    Article  Google Scholar 

  • Chen Y, Han J, Wang T, Mu TC (2011) Determination of absorption rate and capacity of CO2 in ionic liquids at atmospheric pressure by thermogravimetric analysis. Energy Fuels 25:5810–5815

    Article  CAS  Google Scholar 

  • Chen JJ, Li WW, Li XL, Yu HQ (2012) Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: A computational investigation. Phys Chem Chem Phys 14:4589–4596

    Article  CAS  Google Scholar 

  • Chiu CL (1987) Entropy and probability concepts in hydraulics. J Hydraul Eng 113(5):583–599

    Article  Google Scholar 

  • Cui H, Singh VP (2014) Suspended sediment concentration in open channels using Tsallis entropy. J Hydrol Eng 19(5):966-977.e21111046

    Article  Google Scholar 

  • Feron PHM (2010) Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide. J Greenhouse Gas Control 4:152–160

    Article  CAS  Google Scholar 

  • Gimeno MP, Mayoral MC, Andrés JM (2013) Influence of temperature on CO2 absorption rate and capacity in ionic liquids. Energy Fuels 27:3928–3935

    Article  CAS  Google Scholar 

  • Goodrich BF, de la Fuente JC, Gurkan BE, Zadigian DJ, Price EA, Huang Y, Brennecke JF (2011) Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide. Ind Eng Chem Res 50(1):111–118

    Article  CAS  Google Scholar 

  • Guo Y, Bao H, Yuan J, Tang M, Yang X, Hu H (2020) Experimental study on CO2 absorption by ionic liquid [TETAH]+[BF4]-ethylene glycol mixed solvent. Acta Sci Circum 40(2):492–496

    Google Scholar 

  • Hu H, Li F, Xia Q, Li X, Liao L, Fan M (2014) Research on influencing factors and mechanism of CO2 absorption bypoly-amino-based ionic liquids. Int J Greenhouse Gas Control 31:33–40. https://doi.org/10.1016/j.ijggc.2014.09.021

    Article  CAS  Google Scholar 

  • Hu PC, Zhang R, Liu ZC, Liu HY, Xu CM, Meng XH, Liang M, Liang SS (2015) Absorption performance and mechanism of Co2 in aqueous solutions of amine-based ionic liquids. Energy Fuels 29(9):6019–6024

    Article  CAS  Google Scholar 

  • Huang Q, Li Y, Jin XB, Zhao D, Chen GZ (2011) Chloride ion enhanced thermal stability of carbon dioxide captured by monoethanolamine in hydroxyl imidazolium based ionic liquids. Energy Environ Sci 4:2125–2133

    Article  CAS  Google Scholar 

  • Jaynes ET (1957a) Information theory and statistical mechanics I. Phys Rev 106(4):620–630. https://doi.org/10.1103/PhysRev.106.620

    Article  Google Scholar 

  • Jaynes ET (1957b) Information theory and statistical mechanics II. Phys Rev 108(2):171–190

    Article  Google Scholar 

  • Jaynes ET (1982) On the rationale of maximum entropy methods. Proc IEEE 70(9):939–952. https://doi.org/10.1109/proc.1982.12425

    Article  Google Scholar 

  • Karadas F, Atilhan M, Aparicio S (2010) Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuels 24:5817–5828

    Article  CAS  Google Scholar 

  • Khozani ZS, Mohtar WHMW (2019) Investigation of new Tsallisbased equation to predict shear stress distribution in circular and trapezoidal channels. Entropy 21:1046

    Article  CAS  Google Scholar 

  • Kumbhakar M, Ghoshal K (2016) Two dimensional velocity distribution in open channels using Renyi entropy. Phys A 450:546–559. https://doi.org/10.1016/j.physa.2016.01.046

    Article  Google Scholar 

  • Kumbhakar M, Kundu S, Ghoshal K (2018) An explicit analytical expression for bed-load layer thickness based on maximum entropy principle. Phys Lett A 382:2297–2304

    Article  CAS  Google Scholar 

  • Kundu S (2018) Derivation of different suspension equations in sediment-laden flow from Shannon entropy. Stoch Environ Res Risk Assess 32:563–576. https://doi.org/10.1007/s00477-017-1455-3

    Article  Google Scholar 

  • Liu W, Hu S, Chen W, Xiang J, Sun L, Su S (2012) Synthesis and identification of functional ionic liquids and research on its performance of CO2 absorption. CIESC Journal 63(1):139–146

    CAS  Google Scholar 

  • Luo H, Singh VP, Schmidt A (2018) Comparative study of 1D entropy-based and conventional deterministic velocity distribution equations for open channel flows. J Hydrol 563:679–693. https://doi.org/10.1016/j.jhydrol.2018.06.010

    Article  Google Scholar 

  • Mirarab M, Sharifi M, Ghayyem MA, Mirarab F (2014) Prediction of solubility of CO2 in ethanol−[EMIM][Tf2N] ionic liquid mixtures using artificial neural networks based on genetic algorithm. Fluid Phase Equilib 371(18):6–14

    Article  CAS  Google Scholar 

  • Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111:9001–9009

    Article  CAS  Google Scholar 

  • Pathak K, Pandey KK, Singh VP (2020) Entropy-based velocity and shear stress distributions for trapezoidal channel. J Hydrolog Eng 25(11):04020047. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002001

    Article  Google Scholar 

  • Pennline HW, Luebke DR, Jones KL, Myers CR, Morsi BI, Heintz YJ, Iiconich JB (2008) Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Process Technol 89:897–907

    Article  CAS  Google Scholar 

  • Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, Maeder M, Attalla M (2009) Carbon dioxide post combustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol 43:6427–6433

    Article  CAS  Google Scholar 

  • Rochelle GT (2009) Amine scrubbing of CO2 capture. Science 325:1652–1654

    Article  CAS  Google Scholar 

  • Sánchez LM, Meindersma GGW, de Haan AB (2010) Kinetics of absorption of CO2 in amino-functionalized ionic liquids. Chem Eng J 166:1104–1115

    Article  Google Scholar 

  • Shannon CE (1948) The mathematical theory of communications, I and II. Bell Syst Tech J 27:379–423. https://doi.org/10.1063/1.3067010

    Article  Google Scholar 

  • Shojaeezadeh SA, Amiri SM (2018) Estimation of two-dimensional velocity distribution profile using general index entropy in open channels. Phys A 491:912–925. https://doi.org/10.1016/j.physa.2017.09.096

    Article  Google Scholar 

  • Shorrocks A (1980) The class of additively decomposable inequality measures. Econometrica 48(3):613

    Article  Google Scholar 

  • Singh VP (2010a) Entropy theory for derivation of infiltration equations. Water Resour Res. https://doi.org/10.1029/2009WR008193

    Article  Google Scholar 

  • Singh VP (2010b) Tsallis entropy for derivation of infiltration equations. Trans ASABE 53(2):447–463

    Article  Google Scholar 

  • Singh VP (2011) A Shannon entropy-based general derivation of infiltration equations. Trans ASABE 54(1):123–129

    Article  Google Scholar 

  • Singh VP, Cui HJ, Byrd AR (2014) Derivation of rating curve by the Tsallis entropy. J Hydro 513:342–352. https://doi.org/10.1016/j.jhydrol.2014.03.061

    Article  Google Scholar 

  • Singh VP, Sivakumar B, Cui HJ (2017) Tsallis entropy theory for modelling in water engineering: a review. Entropy 19:641. https://doi.org/10.3390/e19120641

    Article  Google Scholar 

  • Wang Y, Fang C, Zhang F, Wu Y, Geng J, Zhang Z (2009) Performance of CO2 absorption in mixed aqueous solution of MDEA and amino acid ionic liquids. CIESC Journal 60(11):2781–2786

    CAS  Google Scholar 

  • Wang M, Zhang L, Gao L, Pi K, Zhang J, Zheng C (2013) Improvement of the CO2 Absorption Performance Using Ionic Liquid [NH2emim][BF4] and [emim][BF4]/[bmim][BF4] Mixtures. Energy Fuels 27:461–466. https://doi.org/10.1021/ef301541s

    Article  CAS  Google Scholar 

  • Yan Q, Lyu Y, Pan L, Wei X, Li B (2020) Experimental investigation on the absorption characteristics of two ionic liquids for CO2 in cement kiln tail gas. Clean Coal Technol 26(5):146–152

    Google Scholar 

  • Yang Q, Hu H, Xia Q, Li F (2016a) Effect of ionic liquid synthesized by triethylenetetramine as precursor on CO2 absorption. Acta Sci Circum 36(6):2195–2200

    CAS  Google Scholar 

  • Yang Q, Hu H, Xia Q, Li F, Cao H (2016b) Adsorption characteristics of γ-Al2O3–supported poly-amino based ionic liquid on CO2. Applied Chemical Industry 45(1):1–6

    Google Scholar 

  • Yokozeki A, Shiflett MB, Junk CP, Grieco LM, Foo T (2008) Physical and chemical absorptions of carbon dioxide in room temperature ionic liquids. J Phys Chem B 112:16654–16663

    Article  CAS  Google Scholar 

  • Zhang Y, Wang S, Yue A, Zhang Y, Gao C, Du W, Xing G, Zhao J (2018) Study on influence factors of CO2 absorption and desorption processes in aqueous solution of DETA/MDEA. Journal of Shanxi Agricultural Sciences 46(1):76–80. https://doi.org/10.3969/j.issn.1002-2481.2018.01.20

    Article  CAS  Google Scholar 

  • Zhou S, Chen X, Nguyen T, Voice AK, Rochelle GA (2010) Aqueous ethylenediamine for CO2 capture. Chem Sus Chem 3:913–918

    Article  CAS  Google Scholar 

  • Zhou ZM, Zhou XB, Jing GH, Lv BH (2016) Evaluation of the multi-amine functionalized ionic liquid for efficient post combustion CO2 Capture. Energy Fuels 30(9):7489–7495

    Article  CAS  Google Scholar 

  • Zhu Z (2018) A simple explicit expression for the flocculation dynamics modeling of cohesive sediment based on entropy considerations. Entropy 20(845):1–20. https://doi.org/10.3390/e20110845

    Article  CAS  Google Scholar 

  • Zhu Z, Yu J (2019) Estimating the bed-load layer thickness in open channels by Tsallis entropy. Entropy 21:123. https://doi.org/10.3390/e21020123

    Article  CAS  Google Scholar 

  • Zhu Z, Dou J, Wang H (2020) An entropic model for the rock water absorption process. Stoch Environ Res Risk Assess 34:1871–1886. https://doi.org/10.1007/s00477-020-01864-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z. Characterizing the carbon dioxide absorption process of ionic liquids by an entropic method. Stoch Environ Res Risk Assess 36, 511–541 (2022). https://doi.org/10.1007/s00477-021-02107-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-021-02107-9

Keywords

Navigation