Skip to main content

Characterizing the carbon dioxide absorption process of ionic liquids by an entropic method

Abstract

The reduction of CO2 emissions is greatly needed in the context of global warming. Among all technologies for reducing CO2 concentrations, the capture of CO2 with ionic liquids is a good candidate, especially in industry. In this study, a mathematical expression for characterizing the temporal evolution of the CO2 absorption amount of an ionic liquid is derived using the probability method based on two entropy functions: Shannon entropy and general index entropy. Both the Shannon entropy and general index entropy lead to the same entropic expression, which can model the CO2 absorption process as the absorption time advances from null to infinity. Its accuracy is validated by comparison with ten experimental datasets with a high average correlation coefficient value of 0.983, a low relative bias value of 0.054 and a low relative root mean square error value of 0.134. Moreover, the proposed maximum CO2 absorption capacity in the entropic model is presented to be a function of some factors, including the type of ionic liquid, temperature, gas flow rate, and water content. This derived entropic model has a simple mathematical form, showing its potential to predict the temporal variation in the CO2 absorption amount under some conditions of interest as long as the type of ionic liquid, temperature, gas inflow rate and water content are provided from limited datasets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Ahmady A, Hashim MA, Aroua MK (2011) Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilib 309(1):76–82

    CAS  Article  Google Scholar 

  2. Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 captured by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927

    CAS  Article  Google Scholar 

  3. Blanchard LA, Hancu D, Beckman E, Brennecke J (1999) Green processing usingionic liquids and CO2. Nature 399:28–29

    Article  Google Scholar 

  4. Chen Y, Hu H (2017) Carbon dioxide capture by diethylenetriamine hydrobromide in nonaqueous systems and phase-change formation. Energy Fuels 31:5363–5375

    CAS  Article  Google Scholar 

  5. Chen L, Singh VP (2018) Entropy-based derivation of generalized distributions for hydro-meteorological frequency analysis. J Hydrol 557:699–712

    Article  Google Scholar 

  6. Chen Y, Han J, Wang T, Mu TC (2011) Determination of absorption rate and capacity of CO2 in ionic liquids at atmospheric pressure by thermogravimetric analysis. Energy Fuels 25:5810–5815

    CAS  Article  Google Scholar 

  7. Chen JJ, Li WW, Li XL, Yu HQ (2012) Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: A computational investigation. Phys Chem Chem Phys 14:4589–4596

    CAS  Article  Google Scholar 

  8. Chiu CL (1987) Entropy and probability concepts in hydraulics. J Hydraul Eng 113(5):583–599

    Article  Google Scholar 

  9. Cui H, Singh VP (2014) Suspended sediment concentration in open channels using Tsallis entropy. J Hydrol Eng 19(5):966-977.e21111046

    Article  Google Scholar 

  10. Feron PHM (2010) Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide. J Greenhouse Gas Control 4:152–160

    CAS  Article  Google Scholar 

  11. Gimeno MP, Mayoral MC, Andrés JM (2013) Influence of temperature on CO2 absorption rate and capacity in ionic liquids. Energy Fuels 27:3928–3935

    CAS  Article  Google Scholar 

  12. Goodrich BF, de la Fuente JC, Gurkan BE, Zadigian DJ, Price EA, Huang Y, Brennecke JF (2011) Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide. Ind Eng Chem Res 50(1):111–118

    CAS  Article  Google Scholar 

  13. Guo Y, Bao H, Yuan J, Tang M, Yang X, Hu H (2020) Experimental study on CO2 absorption by ionic liquid [TETAH]+[BF4]-ethylene glycol mixed solvent. Acta Sci Circum 40(2):492–496

    Google Scholar 

  14. Hu H, Li F, Xia Q, Li X, Liao L, Fan M (2014) Research on influencing factors and mechanism of CO2 absorption bypoly-amino-based ionic liquids. Int J Greenhouse Gas Control 31:33–40. https://doi.org/10.1016/j.ijggc.2014.09.021

    CAS  Article  Google Scholar 

  15. Hu PC, Zhang R, Liu ZC, Liu HY, Xu CM, Meng XH, Liang M, Liang SS (2015) Absorption performance and mechanism of Co2 in aqueous solutions of amine-based ionic liquids. Energy Fuels 29(9):6019–6024

    CAS  Article  Google Scholar 

  16. Huang Q, Li Y, Jin XB, Zhao D, Chen GZ (2011) Chloride ion enhanced thermal stability of carbon dioxide captured by monoethanolamine in hydroxyl imidazolium based ionic liquids. Energy Environ Sci 4:2125–2133

    CAS  Article  Google Scholar 

  17. Jaynes ET (1957a) Information theory and statistical mechanics I. Phys Rev 106(4):620–630. https://doi.org/10.1103/PhysRev.106.620

    Article  Google Scholar 

  18. Jaynes ET (1957b) Information theory and statistical mechanics II. Phys Rev 108(2):171–190

    Article  Google Scholar 

  19. Jaynes ET (1982) On the rationale of maximum entropy methods. Proc IEEE 70(9):939–952. https://doi.org/10.1109/proc.1982.12425

    Article  Google Scholar 

  20. Karadas F, Atilhan M, Aparicio S (2010) Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuels 24:5817–5828

    CAS  Article  Google Scholar 

  21. Khozani ZS, Mohtar WHMW (2019) Investigation of new Tsallisbased equation to predict shear stress distribution in circular and trapezoidal channels. Entropy 21:1046

    CAS  Article  Google Scholar 

  22. Kumbhakar M, Ghoshal K (2016) Two dimensional velocity distribution in open channels using Renyi entropy. Phys A 450:546–559. https://doi.org/10.1016/j.physa.2016.01.046

    Article  Google Scholar 

  23. Kumbhakar M, Kundu S, Ghoshal K (2018) An explicit analytical expression for bed-load layer thickness based on maximum entropy principle. Phys Lett A 382:2297–2304

    CAS  Article  Google Scholar 

  24. Kundu S (2018) Derivation of different suspension equations in sediment-laden flow from Shannon entropy. Stoch Environ Res Risk Assess 32:563–576. https://doi.org/10.1007/s00477-017-1455-3

    Article  Google Scholar 

  25. Liu W, Hu S, Chen W, Xiang J, Sun L, Su S (2012) Synthesis and identification of functional ionic liquids and research on its performance of CO2 absorption. CIESC Journal 63(1):139–146

    CAS  Google Scholar 

  26. Luo H, Singh VP, Schmidt A (2018) Comparative study of 1D entropy-based and conventional deterministic velocity distribution equations for open channel flows. J Hydrol 563:679–693. https://doi.org/10.1016/j.jhydrol.2018.06.010

    Article  Google Scholar 

  27. Mirarab M, Sharifi M, Ghayyem MA, Mirarab F (2014) Prediction of solubility of CO2 in ethanol−[EMIM][Tf2N] ionic liquid mixtures using artificial neural networks based on genetic algorithm. Fluid Phase Equilib 371(18):6–14

    CAS  Article  Google Scholar 

  28. Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111:9001–9009

    CAS  Article  Google Scholar 

  29. Pathak K, Pandey KK, Singh VP (2020) Entropy-based velocity and shear stress distributions for trapezoidal channel. J Hydrolog Eng 25(11):04020047. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002001

    Article  Google Scholar 

  30. Pennline HW, Luebke DR, Jones KL, Myers CR, Morsi BI, Heintz YJ, Iiconich JB (2008) Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Process Technol 89:897–907

    CAS  Article  Google Scholar 

  31. Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, Maeder M, Attalla M (2009) Carbon dioxide post combustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol 43:6427–6433

    CAS  Article  Google Scholar 

  32. Rochelle GT (2009) Amine scrubbing of CO2 capture. Science 325:1652–1654

    CAS  Article  Google Scholar 

  33. Sánchez LM, Meindersma GGW, de Haan AB (2010) Kinetics of absorption of CO2 in amino-functionalized ionic liquids. Chem Eng J 166:1104–1115

    Article  Google Scholar 

  34. Shannon CE (1948) The mathematical theory of communications, I and II. Bell Syst Tech J 27:379–423. https://doi.org/10.1063/1.3067010

    Article  Google Scholar 

  35. Shojaeezadeh SA, Amiri SM (2018) Estimation of two-dimensional velocity distribution profile using general index entropy in open channels. Phys A 491:912–925. https://doi.org/10.1016/j.physa.2017.09.096

    Article  Google Scholar 

  36. Shorrocks A (1980) The class of additively decomposable inequality measures. Econometrica 48(3):613

    Article  Google Scholar 

  37. Singh VP (2010a) Entropy theory for derivation of infiltration equations. Water Resour Res. https://doi.org/10.1029/2009WR008193

    Article  Google Scholar 

  38. Singh VP (2010b) Tsallis entropy for derivation of infiltration equations. Trans ASABE 53(2):447–463

    Article  Google Scholar 

  39. Singh VP (2011) A Shannon entropy-based general derivation of infiltration equations. Trans ASABE 54(1):123–129

    Article  Google Scholar 

  40. Singh VP, Cui HJ, Byrd AR (2014) Derivation of rating curve by the Tsallis entropy. J Hydro 513:342–352. https://doi.org/10.1016/j.jhydrol.2014.03.061

    Article  Google Scholar 

  41. Singh VP, Sivakumar B, Cui HJ (2017) Tsallis entropy theory for modelling in water engineering: a review. Entropy 19:641. https://doi.org/10.3390/e19120641

    Article  Google Scholar 

  42. Wang Y, Fang C, Zhang F, Wu Y, Geng J, Zhang Z (2009) Performance of CO2 absorption in mixed aqueous solution of MDEA and amino acid ionic liquids. CIESC Journal 60(11):2781–2786

    CAS  Google Scholar 

  43. Wang M, Zhang L, Gao L, Pi K, Zhang J, Zheng C (2013) Improvement of the CO2 Absorption Performance Using Ionic Liquid [NH2emim][BF4] and [emim][BF4]/[bmim][BF4] Mixtures. Energy Fuels 27:461–466. https://doi.org/10.1021/ef301541s

    CAS  Article  Google Scholar 

  44. Yan Q, Lyu Y, Pan L, Wei X, Li B (2020) Experimental investigation on the absorption characteristics of two ionic liquids for CO2 in cement kiln tail gas. Clean Coal Technol 26(5):146–152

    Google Scholar 

  45. Yang Q, Hu H, Xia Q, Li F (2016a) Effect of ionic liquid synthesized by triethylenetetramine as precursor on CO2 absorption. Acta Sci Circum 36(6):2195–2200

    CAS  Google Scholar 

  46. Yang Q, Hu H, Xia Q, Li F, Cao H (2016b) Adsorption characteristics of γ-Al2O3–supported poly-amino based ionic liquid on CO2. Applied Chemical Industry 45(1):1–6

    Google Scholar 

  47. Yokozeki A, Shiflett MB, Junk CP, Grieco LM, Foo T (2008) Physical and chemical absorptions of carbon dioxide in room temperature ionic liquids. J Phys Chem B 112:16654–16663

    CAS  Article  Google Scholar 

  48. Zhang Y, Wang S, Yue A, Zhang Y, Gao C, Du W, Xing G, Zhao J (2018) Study on influence factors of CO2 absorption and desorption processes in aqueous solution of DETA/MDEA. Journal of Shanxi Agricultural Sciences 46(1):76–80. https://doi.org/10.3969/j.issn.1002-2481.2018.01.20

    Article  Google Scholar 

  49. Zhou S, Chen X, Nguyen T, Voice AK, Rochelle GA (2010) Aqueous ethylenediamine for CO2 capture. Chem Sus Chem 3:913–918

    CAS  Article  Google Scholar 

  50. Zhou ZM, Zhou XB, Jing GH, Lv BH (2016) Evaluation of the multi-amine functionalized ionic liquid for efficient post combustion CO2 Capture. Energy Fuels 30(9):7489–7495

    CAS  Article  Google Scholar 

  51. Zhu Z (2018) A simple explicit expression for the flocculation dynamics modeling of cohesive sediment based on entropy considerations. Entropy 20(845):1–20. https://doi.org/10.3390/e20110845

    CAS  Article  Google Scholar 

  52. Zhu Z, Yu J (2019) Estimating the bed-load layer thickness in open channels by Tsallis entropy. Entropy 21:123. https://doi.org/10.3390/e21020123

    CAS  Article  Google Scholar 

  53. Zhu Z, Dou J, Wang H (2020) An entropic model for the rock water absorption process. Stoch Environ Res Risk Assess 34:1871–1886. https://doi.org/10.1007/s00477-020-01864-3

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhongfan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z. Characterizing the carbon dioxide absorption process of ionic liquids by an entropic method. Stoch Environ Res Risk Assess (2021). https://doi.org/10.1007/s00477-021-02107-9

Download citation

Keywords

  • Carbon dioxid
  • Absorption
  • Ionic liquid
  • Entropy