Skip to main content

Concentration, distribution and probabilistic health risk assessment of exposure to fluoride in drinking water of Hormozgan province, Iran

Abstract

Herein, the health risk assessment of exposure to fluoride in drinking water of southern province of Iran was performed with a definite and probabilistic approach. The Monte-Carlo simulation and sensitivity analysis were used to explain the impact of risk and uncertainty upon estimations. The results indicated that fluoride concentration was in the range of 0.1–0.9 mg/L with an average of 0.454 ± 0.205 mg/L, and distribution function followed the normality. Moreover, the highest fluoride concentration was observed in the central and northern regions of the province. In the definitive method, hazard quotient (HQ) associated with fluoride in drinking water were lower than 1 (HQ < 1). Conducting Monte-Carlo simulation illustrated that the potential non-carcinogenic risk for children in the 95th percentile exceeded the safe limit of 1, indicating a potential non-carcinogenic in this age group. Sensitivity analysis showed that fluoride concentration and water consumption rate had the most effect in the model. Therefore, consumption of water and foods containing fluoride along with excessive consumption of tea could increase the risk for human health. The results suggested that a continuous monitoring of fluoride in water resources besides proper dietary regime for inhabitants of this province should be taken into consideration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abbaslou H, Abtahi A, Baghernejad M (2013) Effect of weathering and mineralogy on the distribution of major and trace elements (Hormozgan Province, Southern Iran). Int J for Soil Eros 3:15–25

    Google Scholar 

  2. Abbaslou H, Martin F, Abtahi A, Moore F (2014) Trace element concentrations and background values in the arid soils of Hormozgan Province of Southern Iran. Arch Agron Soil Sci 60(8):1125–1143. https://doi.org/10.1080/03650340.2013.864387

    CAS  Article  Google Scholar 

  3. Ali S, Fakhri Y, Golbini M, Thakur SK, Alinejad A et al. (2019) Concentration of fluoride in groundwater of india: lsk assessment. Groundw Sustain 9:100224

    Article  Google Scholar 

  4. Asadpour G (2017) Evaluation of faryab spring hydrochemistry in Hormozgan Province, Southern Iran. Pollution 3:333–339

    CAS  Google Scholar 

  5. Ashrafi SD, Jaafari J, Sattari L, Esmaeilzadeh N, Safari GH (2020) Monitoring and health risk assessment of fluoride in drinking water of East Azerbaijan Province, Iran. J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1849662

    Article  Google Scholar 

  6. Aslani H, Zarei M, Taghipour H, Khashabi E, Ghanbari H, Ejlali A (2019) Monitoring, mapping and health risk assessment of fluoride in drinking water supplies in rural areas of maku and poldasht, Iran. Environ Geochem Health 41(5):2281–2294. https://doi.org/10.1007/s10653-019-00282-x

    CAS  Article  Google Scholar 

  7. Ayoob S, Gupta AK (2006) fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36(6):433–487. https://doi.org/10.1080/10643380600678112

    CAS  Article  Google Scholar 

  8. Badee Nezhad A, Farzadkia Gholami M, Jonidi Jafari A (2014) Chemical quality assessment of shiraz plain’s groundwater as a drinking water resource using geographical information system (GIS). ISMJ 17(3):358–367

    Google Scholar 

  9. Badeenezhad A, Abbasi F, Shahsavani S (2019) Performance of household water desalinations devices and health risks assessment of fluorides (F−) and nitrate (NO3−) in input and output water of the devices in behbahan city southwest Iran. Hum Ecol Risk Assess 25(1–2):217–229. https://doi.org/10.1080/10807039.2019.1568858

    CAS  Article  Google Scholar 

  10. Badeenezhad A, Tabatabaee HR, Nikbakht HA, Radfard M, Abbasnia A, Baghapour MA, Alhamd M (2020) estimation of the groundwater quality index and investigation of the affecting factors their changes in shiraz drinking groundwater, Iran. Ground Sustain 11:100435. https://doi.org/10.1016/j.gsd.2020.100435

    Article  Google Scholar 

  11. Badeenezhad A, Darabi K, Heydari M, Amrane A, Ghelichi-Ghojogh M, Parseh I, Darvishmotevalli M, Azadbakht O, Javanmardi P (2021a) Temporal distribution and zoning of nitrate and fluoride concentrations in behbahan drinking water distribution network and health risk assessment by using sensitivity analysis and monte carlo simulation. J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1903455

    Article  Google Scholar 

  12. Badeenezhad A, Radfard M, Abbasi F, Jurado A, Bozorginia M, Jalili M, Soleimani H (2021b) Effect of land use changes on non-carcinogenic health risks due to nitrate exposure to drinking groundwater. Environ Sci Pollut Res 33797047:1–11. https://doi.org/10.1007/s11356-021-13753-5

    CAS  Article  Google Scholar 

  13. Battaleb-Looie S, Moore F, Jacks G, Ketabdari MR (2012) Geological sources of fluoride and acceptable intake of fluoride in an endemic fluorosis area, Southern Iran. Environ Geochem Health 34(5):641–650. https://doi.org/10.1007/s10653-012-9451-5

    CAS  Article  Google Scholar 

  14. Bazrafshan O, Dehghanpir S (2020) Application of water footprint, virtual water trade and water footprint economic value of citrus fruit productions in Hormozgan Province, Iran. Sustain Water Resour Manag 6(6):1–10. https://doi.org/10.1007/s40899-020-00473-w

    Article  Google Scholar 

  15. Bodrud-Doza M, Islam SDU, Rume T et al (2020) Groundwater quality and human health risk assessment for safe and sustainable water supply of Dhaka City Dwellers in Bangladesh. Ground Sustain 10:100374. https://doi.org/10.1016/j.gsd.2020.100374

    Article  Google Scholar 

  16. Carvajal-Rodríguez A (2018) Multi-model inference of mate choice effects from an information theoretic approach. Biorxiv. https://doi.org/10.1101/305730

    Article  Google Scholar 

  17. Cavanaugh JE, Neath AA (2019) The akaike information criterion: background, derivation, properties, application, interpretation, and refinements. Wiley Interdiscip Rev Comput Stat 11(3):E1460. https://doi.org/10.1002/wics.1460

    Article  Google Scholar 

  18. Chen G, Wang X, Wang R, Liu G (2019) Health risk assessment of potentially harmful elements in subsidence water bodies using a monte carlo approach: an example from the huainan coal mining area, China. Ecotoxicol Environ Saf 171:737–745. https://doi.org/10.1016/j.ecoenv.2018.12.101

    CAS  Article  Google Scholar 

  19. Das S, De Oliveira LM, Da Silva E, Liu Y, Ma LQ (2017) Fluoride concentrations in traditional and herbal teas: health risk assessment. Environ Pollut 231:779–784. https://doi.org/10.1016/j.envpol.2017.08.083

    CAS  Article  Google Scholar 

  20. Davari A, Danesh Kazemi D, Mohammadi H, Abdollahi Ali Beik F (2004) The prevalence of dental fluorosis and its relationship with the level of fluoride in 12–15 years old guidance school students in Southern Iran. J Dent 5:36–43

    Google Scholar 

  21. De Martonne E (1926) Une nouvelle function climatologique: l’indice d’aridité. Meteorologie 2:449–459

    Google Scholar 

  22. Dehbandi R, Moore F, Keshavarzi B (2018) Geochemical sources, hydrogeochemical behavior, and health risk assessment of fluoride in an endemic fluorosis area, Central Iran. Chemosphere 193:763–776. https://doi.org/10.1016/j.chemosphere.2017.11.021

    CAS  Article  Google Scholar 

  23. Dehghani MH, Zarei A, Yousefi M, Asghari FB, Haghighat GA (2019) Fluoride contamination in groundwater resources in the southern iran and its related human health risks. Desalin Water Treat 153:95–104. https://doi.org/10.5004/dwt.2019.23993

    CAS  Article  Google Scholar 

  24. Deng Y, Ni F, Xiang L, Zhang Y, Liu X, Wang W (2013) Research on the health risk assessment exposure factors of rural residents’ drinking water in the western edge of sichuan basin. China J Agro Environ Sci. https://doi.org/10.1109/ICBBE.2010.5515115

    Article  Google Scholar 

  25. Dindarloo K, Jamali HA, Lakbala A, Valizade A, Azad M, Mahmodi H (2016) Determination of fluoride concentration in drinking water and its relation with DMFT: a case study in hormozgan, Iran. J Res Med Sci 3(3):28–36

    Google Scholar 

  26. Edmunds WM, Smedley PL (2013) Fluoride in natural waters. Essentials of medical geology. Springer, New York, pp 311–336

    Chapter  Google Scholar 

  27. EPA (1997) Exposure factors handbook, Volume I-General Factors, EPA/600/P-95/002Fa

  28. Fernández-Macias JC, Ochoa-Martínez ÁC et al (2020) Probabilistic human health risk assessment associated with fluoride and arsenic co-occurrence in drinking water from the metropolitan area of San Luis Potosí, Mexico. Environ Monit Assess 192(11):1–13

    Article  Google Scholar 

  29. Fordyce F, Vrana K, Zhovinsky E, Povoroznuk V et al (2007) A health risk assessment for fluoride in central Europe. Environ Geochem Health 29(2):83–102

    CAS  Article  Google Scholar 

  30. Ghaderpoori M, Najafpoor AA, Ghaderpoury A, Shams M (2018) Data on fluoride concentration and health risk assessment of drinking water in khorasan Razavi Province, Iran. Data Brief 18:1596. https://doi.org/10.1016/j.dib.2018.04.045

    Article  Google Scholar 

  31. Ghaderpoori M, Paydar M, Zarei A, Alidadi M, Najafpoor AA, Gohary AH, Shams M (2019) Health risk assessment of fluoride in water distribution network of Mashhad, Iran. Hum Ecol Risk Assess 25(4):851–862. https://doi.org/10.1080/10807039.2018.1453297

    CAS  Article  Google Scholar 

  32. Ghahramani E, Kamarehie B, Rezaiee R, Jafari A et al (2020) Fluoride content in drinking water of the rural areas of divandarreh city, Kurdistan province, Iran: a non-carcinogenic risk assessment. J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1857752

    Article  Google Scholar 

  33. Harrison PT (2005) Fluoride in water: a UK perspective. J Fluor Chem 126(11–12):1448–1456. https://doi.org/10.1016/j.jfluchem.2005.09.009

    CAS  Article  Google Scholar 

  34. Hossain M, Patra PK (2020) Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types. Environ Pollut 258:113646. https://doi.org/10.1016/j.envpol.2019.113646

    CAS  Article  Google Scholar 

  35. Ji Y, Wu J, Wang Y, Elumalai V, Subramani T (2020) Seasonal variation of drinking water quality and human health risk assessment in Hancheng City of Guanzhong Plain, China. Expo Health 12(3):469–485. https://doi.org/10.1007/s12403-020-00357-6

    CAS  Article  Google Scholar 

  36. Karunanidhi D, Aravinthasamy P, Roy PD, Praveenkumar R et al (2020) Evaluation of non-carcinogenic risks due to fluoride and nitrate contaminations in a groundwater of an urban part (Coimbatore region) of South India. Environ Monit Assess 192(2):1–16

    Article  Google Scholar 

  37. Kashyap CA, Ghosh A, Singh S, Ali S, Singh HK, Chandrasekhar T, Chandrasekharam D (2020) Distribution, genesis and geochemical modeling of fluoride in the water of tribal area of Bijapur District, Chhattisgarh, Central India. Ground Sustain 11:100403. https://doi.org/10.1016/j.gsd.2020.100403

    Article  Google Scholar 

  38. Keramati H, Miri A, Baghaei M, Rahimizadeh A, Ghorbani R, Fakhri Y et al (2019) Fluoride in iranian drinking water resources: a systematic review, meta-analysis and non-carcinogenic risk assessment. Biol Trace Elem Res 188(2):261–273. https://doi.org/10.1007/s12011-018-1418-7

    CAS  Article  Google Scholar 

  39. Keshavarz S, Ebrahimi A, Nikaeen M (2015) Fluoride exposure and its health risk assessment in drinking water and staple food in the population of Dayyer, Iran, In 2013. J Educ Health Promot 4:72–72

    Google Scholar 

  40. Kiefer K, Müller A, Singer H, Hollender J (2019) New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res 165:114972. https://doi.org/10.1016/j.watres.2019.114972

    CAS  Article  Google Scholar 

  41. Li Y, Liang C, Slemenda CW, Ji R, Sun S, Cao J et al (2001) Effect of long-term exposure to fluoride in drinking water on risks of bone fractures. J Bone Miner Res 16(5):932–939. https://doi.org/10.1359/jbmr.2001.16.5.932

    CAS  Article  Google Scholar 

  42. Malakootian M, Mohammadi A, Faraji M (2020) Investigation of physicochemical parameters in drinking water resources and health risk assessment: a case study In NW Iran. Environ Earth Sci 79(9):1–11. https://doi.org/10.1007/s12665-020-08939-y

    CAS  Article  Google Scholar 

  43. Malinowska E, Inkielewicz I, Czarnowski W, Szefer P (2008) Assessment of fluoride concentration and daily intake by human from tea and herbal infusions. Food Chem Toxicol 46(3):1055–1061. https://doi.org/10.1016/j.fct.2007.10.039

    CAS  Article  Google Scholar 

  44. Means B (1989) Risk-Assessment Guidance For Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim Report (Final), Environmental Protection Agency, Washington, DC (USA). Office Of Solid Waste

  45. Mesdaghinia A, Vaghefi KA, Montazeri A, Mohebbi MR, Saeedi R (2010) Monitoring of fluoride in groundwater resources of Iran. B Environ Contam Tox 84(4):432–437. https://doi.org/10.1007/s00128-010-9950-y

    CAS  Article  Google Scholar 

  46. Mirzabeygi M, Yousefi M, Soleimani H, Mohammadi AA, Mahvi AH, Abbasnia A (2018) The concentration data of fluoride and health risk assessment in drinking water in the Ardakan City of Yazd Province, Iran. Data Brief 18:40–46. https://doi.org/10.1016/j.dib.2018.02.069

    Article  Google Scholar 

  47. Mohammadi AA, Yousefi M, Yaseri M, Jalilzadeh M, Mahvi AH (2017) Skeletal fluorosis in relation to drinking water in rural areas of west Azerbaijan, Iran. Sci Rep 7(1):17300. https://doi.org/10.1038/s41598-017-17328-8

    CAS  Article  Google Scholar 

  48. Mukherjee I, Singh UK, Patra PK (2019) Exploring A multi-exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semi-arid region of East India. Chemosphere 233:164–173. https://doi.org/10.1016/j.chemosphere.2019.05.278

    CAS  Article  Google Scholar 

  49. Muller W, Heath R, Villet MH (1998) Finding the optimum: fluoridation of potable water in South Africa. Water SA 24:21–28

    CAS  Google Scholar 

  50. Naderi M, Jahanshahi R, Dehbandi R (2020) Two distinct mechanisms of fluoride enrichment and associated health risk in springs’ water near an inactive Volcano, Southeast Iran. Ecotoxicol Environ Saf 195:110503. https://doi.org/10.1016/j.ecoenv.2020.110503

    CAS  Article  Google Scholar 

  51. Nath B, Chaliha C, Bhuyan B, Kalita E, Baruah D, Bhagabati A (2018) GIS Mapping-based impact assessment of groundwater contamination by arsenic and other heavy metal contaminants in the brahmaputra river valley: a water quality assessment study. J Clean Prod 201:1001–1011. https://doi.org/10.1016/j.jclepro.2018.08.084

    CAS  Article  Google Scholar 

  52. Peters NE, Meybeck M (2000) Water quality degradation effects on freshwater availability: impacts of human activities. Water Int 25(2):185–193. https://doi.org/10.1080/02508060008686817

    Article  Google Scholar 

  53. Radfarda M, GholizadehA AA, Badeenezhad A, Mohammadid AA, Yousefie M (2019) Health risk assessment to fluoride and nitrate in drinking water of rural residents living in the Bardaskan City, Arid Region, Southeastern Iran. Desalin Water Treat 145:249–256. https://doi.org/10.5004/dwt.2019.23651

    CAS  Article  Google Scholar 

  54. Radhika N, Charan KS (2017) Experimental analysis on three body abrasive wear behaviour of stir cast Al LM 25/Tic metal matrix composite. Trans Indian Inst Met 70(9):2233–2240. https://doi.org/10.1007/s12666-017-1061-6

    CAS  Article  Google Scholar 

  55. Rahman MM, Bodrud-Doza M, Siddiqua MT, Zahid A, Islam AR (2020) Spatiotemporal distribution of fluoride in drinking water and associated probabilistic human health risk appraisal in the coastal region, Bangladesh. Sci Total Environ 724:138316. https://doi.org/10.1016/j.scitotenv.2020.138316

    CAS  Article  Google Scholar 

  56. Rashid A, Farooqi A, Gao X, Zahir S, Noor S, Khattak JA (2020) Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. Chemosphere 243:125409. https://doi.org/10.1016/j.chemosphere.2019.125409

    CAS  Article  Google Scholar 

  57. Response R (1989) Risk assessment guidance for superfund, office of emergency and remedial response, US Environmental Protection Agency

  58. Rezaei M, Nikbakht M, Shakeri A (2017) Geochemistry and sources of fluoride and nitrate contamination of groundwater in lar area, South Iran. Environ Sci Pollut Res 24(18):15471–15487. https://doi.org/10.1007/s11356-017-9108-0

    CAS  Article  Google Scholar 

  59. Saeed M, Malik RN, Kamal A (2020) Fluorosis and cognitive development among children (6–14 Years Of Age) in the endemic areas of the world: a review and critical analysis. Environ Sci Pollut Res 27(3):2566–2579. https://doi.org/10.1007/s11356-019-06938-6

    CAS  Article  Google Scholar 

  60. Sajil Kumar PJ (2021) Fluoride enrichment in groundwater and associated human health risk in a tropical hard rock terrain in South India. Hum Ecol Risk Assess 27(4):1037–1053. https://doi.org/10.1080/10807039.2020.1799185

    CAS  Article  Google Scholar 

  61. Selinus O, Lindh U, Fuge R, Centeno J, Alloway B, Smedley P, Finkelman R (2005) Essentials of medical geology. impacts of the natural environment on public health. Environ Health Perspect 113(11):780

    Article  Google Scholar 

  62. Singh VV, Suleman AA, Ibrahim A, Abdullahi UA, Suleiman SA (2020) Assessment of probability distributions of groundwater quality data in Gwale Area, North-Western Nigeria. Ann Optim Theory Pract 3(1):37–46

    Google Scholar 

  63. Stöcklin J (1968) Structural history and tectonics of Iran: a review. AAPG Bull 52(7):1229–1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D

    Article  Google Scholar 

  64. WHO F (1993) Guidelines for drinking-water quality, WHO Chronicle, 104–108

  65. Wu J, Li P, Qian H (2015) Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of china and the control of aquifer leakage on its concentrations. Environ Earth Sci 73(12):8575–8588. https://doi.org/10.1007/s12665-015-4018-2

    CAS  Article  Google Scholar 

  66. Xiao J, Jin Z, Zhang F (2015) Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China. J Geochem Explor 159:252–261. https://doi.org/10.1016/j.gexplo.2015.09.018

    CAS  Article  Google Scholar 

  67. Yousefi M, Mohammadi AA, Yaseri M, Mahvi AH (2017) Epidemiology of drinking water fluoride and its contribution to fertility, infertility, and abortion: an ecological study in west Azerbaijan Province, Poldasht County, Iran. Fluoride 50(3):343–353

    CAS  Google Scholar 

  68. Yousefi M, Ghoochani M, Mahvi AH (2018) Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht City, Northwest Of Iran. Ecotoxicol Environ Saf 148:426–430. https://doi.org/10.1016/j.ecoenv.2017.10.057

    CAS  Article  Google Scholar 

  69. Yousefi M, Ghalehaskar S, Asghari FB, Ghaderpoury A, Dehghani MH, Ghaderpoori M, Mohammadi AA (2019) Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information System, Northwest Iran. Regul Toxicol Pharmacol 107:104408. https://doi.org/10.1016/j.yrtph.2019.104408

    CAS  Article  Google Scholar 

  70. Zazouli MA, Sadeghnezhad R, Kalankesh LR (2017) Calculating fluoride concentrations data using ambient temperatures in drinking water distribution networks in select provinces of Iran. Data Brief 15:127–132. https://doi.org/10.1016/j.dib.2017.08.054

    Article  Google Scholar 

  71. Zheng D, Liu Y, Luo L, Shahid MZ, Hou D (2020) Spatial variation and health risk assessment of fluoride in drinking water in the chongqing urban areas, China. Environ Geochem Health 42(9):2925–2941. https://doi.org/10.1007/s10653-020-00532-3

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The results presented in this study are from the performed research Project (22888) at Shiraz University of Medical Sciences.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Samaei or Ahmad Badeenezhad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour, A., Tabatabaee, Z., Dehbandi, R. et al. Concentration, distribution and probabilistic health risk assessment of exposure to fluoride in drinking water of Hormozgan province, Iran. Stoch Environ Res Risk Assess (2021). https://doi.org/10.1007/s00477-021-02090-1

Download citation

Keywords

  • Drinking water
  • Fluoride
  • Hazard quotient
  • Monte-Carlo simulation
  • Southern province of Iran