Skip to main content

Multi-model streamflow prediction using conditional bias-penalized multiple linear regression

Abstract

Objective merging of multiple forecasts to improve forecast accuracy is of large interest in many disciplines. Multiple linear regression (MLR) is an extremely attractive technique for this purpose because of its simplicity and interpretability. For modeling and prediction of extremes such as floods using MLR, however, attenuation bias is a very serious issue as it results in systematic under- and over-prediction in the upper and lower tails of the predictand, respectively. In this work, we introduce conditional bias-penalized multiple linear regression (CBP-MLR) which reduces attenuation bias by jointly minimizing mean squared error (MSE) and Type-II error squared. Whereas CBP-MLR improves prediction over tails, it degrades the performance near median. To retain MLR-like performance near median while exploiting the ability of CBP-MLR to improve prediction over tails, we employ composite MLR (CompMLR) which linearly weight-averages the MLR and CBP-MLR estimates. For comparative evaluation, we apply the proposed technique to multi-model streamflow prediction using several operationally produced streamflow forecasts as predictors. The results for multiple forecast groups in the US National Weather Service Middle Atlantic River Forecast Center’s service area show that the relative performance among different input forecasts varies most significantly with the range of the verifying observed streamflow, and that CompMLR is generally superior to the best performing forecasts in the mean squared error sense under widely varying conditions of predictability and predictive skill.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abel AB (2017) Classical measurement error with several regressors. Wharton School of the University of Pennsylvania, National Bureau of Economic Research

  2. Adams T (2015) Verification of the NOAA/NWS MMEFS operational hydrologic ensemble forecasting system in the Ohio River Valley. World Environmental and Water Resources Congress, Austin

    Book  Google Scholar 

  3. Adams TE (2016) Flood Forecasting in the United States NOAA/National Weather Service. In: Flood Forecasting. Elsevier, pp 249–310

  4. Adnan RM, Liang Z, El-Shafie A, Zounemat-Kermani M, Kisi O (2019) Prediction of suspended sediment load using data-driven models. Water 11:2060. https://doi.org/10.3390/w11102060

    Article  Google Scholar 

  5. Alizadeh B, Limon RA, Seo D-J et al (2020) Multiscale postprocessor for ensemble streamflow prediction for short to long ranges. J Hydrometeorol 21:265–285. https://doi.org/10.1175/JHM-D-19-0164.1

    Article  Google Scholar 

  6. Anderson EA (1973) National Weather Service river forecast system: snow accumulation and ablation model. Silver Springs. https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/snow/AndersonHYDRO17.pdf

  7. Anderson E (2006) Snow accumulation and ablation model—SNOW-17. https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/snow/AndersonSnow17.pdf

  8. Baharvand S, Lashkar-Ara B (2021) Hydraulic design criteria of the modified meander C-type fishway using the combined experimental and CFD models. Ecol Eng 164:106207. https://doi.org/10.1016/j.ecoleng.2021.106207

    Article  Google Scholar 

  9. Baharvand S, Jozaghi A, Fatahi-Alkouhi R et al (2020) Comparative study on the machine learning and regression-based approaches to predict the hydraulic jump sequent depth ratio. Iran J Sci Technol Trans Civ Eng. https://doi.org/10.1007/s40996-020-00526-2

    Article  Google Scholar 

  10. Brown JD, Seo D-J (2013) Evaluation of a nonparametric post-processor for bias correction and uncertainty estimation of hydrologic predictions. Hydrol Process 27:83–105. https://doi.org/10.1002/hyp.9263

    Article  Google Scholar 

  11. Brown JD, He M, Regonda S et al (2014a) Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 2. Streamflow verification. J Hydrol 519:2847–2868. https://doi.org/10.1016/j.jhydrol.2014.05.030

    Article  Google Scholar 

  12. Brown JD, Wu L, He M et al (2014b) Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 1. Experimental design and forcing verification. J Hydrol 519:2869–2889. https://doi.org/10.1016/j.jhydrol.2014.05.028

    Article  Google Scholar 

  13. Carl G, Kühn I (2008) Analyzing spatial ecological data using linear regression and wavelet analysis. Stoch Environ Res Risk Assess 22:315–324. https://doi.org/10.1007/s00477-007-0117-2

    Article  Google Scholar 

  14. Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  15. Conway DA, Roberts HV (1983) Reverse regression, fairness, and employment discrimination. J Bus Econ Stat 1:75. https://doi.org/10.2307/1391775

    Article  Google Scholar 

  16. Cui B, Toth Z, Zhu Y, Hou D (2012) Bias correction for global ensemble forecast. Weather Forecast 27:396–410. https://doi.org/10.1175/WAF-D-11-00011.1

    Article  Google Scholar 

  17. Danandeh Mehr A, Kahya E, Şahin A, Nazemosadat MJ (2015) Successive-station monthly streamflow prediction using different artificial neural network algorithms. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-014-0613-0

    Article  Google Scholar 

  18. Demargne J, Wu L, Regonda SK et al (2014) The science of NOAA’s operational hydrologic ensemble forecast service. Bull Am Meteorol Soc 95:79–98. https://doi.org/10.1175/BAMS-D-12-00081.1

    Article  Google Scholar 

  19. Deutsch R (1965) Estimation theory. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  20. Diks CGH, Vrugt JA (2010) Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch Environ Res Risk Assess 24:809–820. https://doi.org/10.1007/s00477-010-0378-z

    Article  Google Scholar 

  21. Du J, McQueen J, DiMego G et al (2004) 21.3 The NOAA/NWS/NCEP short range ensemble forecast (SREF) system: evaluation of an initial condition vs multiple model physics ensemble approach. Bull Am Meteorol Soc 2329–2338

  22. Duan Q, Ajami NK, Gao X, Sorooshian S (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv Water Resour 30:1371–1386. https://doi.org/10.1016/j.advwatres.2006.11.014

    Article  Google Scholar 

  23. Fedora MA, Beschta RL (1989) Storm runoff simulation using an antecedent precipitation index (API) model. J Hydrol 112:121–133. https://doi.org/10.1016/0022-1694(89)90184-4

    Article  Google Scholar 

  24. Frost C, Thompson SG (2000) Correcting for regression dilution bias: comparison of methods for a single predictor variable. J R Stat Soc Ser A Stat Soc 163:173–189. https://doi.org/10.1111/1467-985X.00164

    Article  Google Scholar 

  25. Fuller W (1987) Measurement error models. Wiley, Chichester

    Book  Google Scholar 

  26. Georgakakos KP, Seo D-J, Gupta H et al (2004) Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. J Hydrol 298:222–241. https://doi.org/10.1016/j.jhydrol.2004.03.037

    Article  Google Scholar 

  27. Gochis DJ, Barlage M, Dugger A et al (2018) The WRF-hydro modeling system technical description, (Version 5.0). NCAR technical note. https://ral.ucar.edu/sites/default/files/public/WRFHydroV5TechnicalDescription.pdf

  28. Goldberger AS (1984) Reverse regression and salary discrimination. J Hum Resour 19:293–318. https://doi.org/10.2307/145875

    Article  Google Scholar 

  29. Goodarzi E, Ziaei M, Hosseinipour EZ (2014) Introduction to optimization analysis in hydrosystem engineering. Springer, Cham

    Book  Google Scholar 

  30. Graziano T, Clark E, Cosgrove B, Gochis D (2017) Transforming National Oceanic and Atmospheric Administration (NOAA) water resources prediction. In: 31st conference on hydrology, Seattle, WA, Amer. Meteor. Soc., 2A.2, https://ams.confex.com/ams/97Annual/webprogram/Paper314016.html

  31. Green CA, Ferber MA (1984) Employment discrimination: an empirical test of forward versus reverse regression. J Hum Resour 19:557. https://doi.org/10.2307/145948

    Article  Google Scholar 

  32. Hamill TM, Bates GT, Whitaker JS et al (2013) NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull Am Meteorol Soc 94:1553–1565. https://doi.org/10.1175/BAMS-D-12-00014.1

    Article  Google Scholar 

  33. Hassanzadeh Y, Ghazvinian M, Abdi A, Baharvand S, Jozaghi A (2020) Prediction of short and long-term droughts using artificial neural networks and hydro-meteorological variables. arXiv:2006.02581 [physics.ao-ph]

  34. Hausman J (2001) Mismeasured variables in econometric analysis: problems from the right and problems from the left. J Econ Perspect 15:57–67. https://doi.org/10.1257/jep.15.4.57

    Article  Google Scholar 

  35. Hoerl AE (1962) Application of ridge analysis to regression problems. Chem Eng Prog 58:54–59

    Google Scholar 

  36. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics. https://doi.org/10.1080/00401706.1970.10488634

    Article  Google Scholar 

  37. Hoeting JA, Madigan D, Raftery AE et al (1999) Bayesian model averaging: a tutorial (with discussion). Stat Sci 14:382

    Article  Google Scholar 

  38. Hughes MD (1993) Regression dilution in the proportional hazards model. Biometrics 49:1056. https://doi.org/10.2307/2532247

    CAS  Article  Google Scholar 

  39. Jahan A, Edwards KL, Bahraminasab M (2016) Multi-criteria decision analysis for supporting the selection of engineering materials in product design. Butterworth-Heinemann Elsevier Ltd, Oxford

    Google Scholar 

  40. Jolliffe IT, Stephenson DB (eds) (2011) Forecast verification. Wiley, Chichester

    Google Scholar 

  41. Jozaghi A, Shamsai A (2017) Application of geospatial information system and technique for order preference by similarity to ideal solution for sitting water reservoirs case study: south of Sistan&Balouchestan Province. Sci Res Q Geogr Data 25(100):5–15. https://doi.org/10.22131/sepehr.2017.24802

    Article  Google Scholar 

  42. Jozaghi A, Alizadeh B, Hatami M, Flood I, Khorrami M, Khodaei N, Ghasemi Tousi E (2018) A comparative study of the AHP and TOPSIS techniques for dam site selection using GIS: a case study of Sistan and Baluchestan Province. Iran Geosci 8:494. https://doi.org/10.3390/geosciences8120494

    Article  Google Scholar 

  43. Jozaghi A, Nabatian M, Noh S et al (2019) Improving multisensor precipitation estimation via adaptive conditional bias-penalized merging of rain gauge data and remotely sensed quantitative precipitation estimates. J Hydrometeorol 20:2347–2365. https://doi.org/10.1175/JHM-D-19-0129.1

    Article  Google Scholar 

  44. Jozaghi A, Ghazvinian M, Seo D et al (2020) Improving water forecasting with Bayesian averaging of multiple forecasts. In: 34th conference on hydrology, Boston, MA, Amer. Meteor. Soc., J26.3. https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/369034

  45. Jozaghi A, Shen H, Seo D et al (2021) Improving flood forecasting via conditional bias-penalized bayesian model averaging. In: Amer. Meteor. Soc., 35th conference on hydrology, New Orleans, LA

  46. Khan UT, Valeo C, He J (2013) Non-linear fuzzy-set based uncertainty propagation for improved DO prediction using multiple-linear regression. Stoch Environ Res Risk Assess 27:599–616. https://doi.org/10.1007/s00477-012-0626-5

    Article  Google Scholar 

  47. Khanmohammadi N, Rezaie H, Montaseri M, Behmanesh J (2018) The application of multiple linear regression method in reference evapotranspiration trend calculation. Stoch Environ Res Risk Assess 32:661–673. https://doi.org/10.1007/s00477-017-1378-z

    Article  Google Scholar 

  48. Kim B, Seo D-J, Noh SJ et al (2018) Improving multisensor estimation of heavy-to-extreme precipitation via conditional bias-penalized optimal estimation. J Hydrol 556:1096–1109. https://doi.org/10.1016/j.jhydrol.2016.10.052

    Article  Google Scholar 

  49. Krzysztofowicz R (1999) Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour Res. https://doi.org/10.1029/1999WR900099

    Article  Google Scholar 

  50. Lashkar-Ara B, Baharvand S, Najafi L (2021) Study the performance of data-driven models to predict the scour depth caused by the aerated vertical jet. Irrig Sci Eng 43(4):79–89

    Google Scholar 

  51. Lee H, Shen H, Noh SJ et al (2019) Improving flood forecasting using conditional bias-penalized ensemble Kalman filter. J Hydrol 575:596–611. https://doi.org/10.1016/j.jhydrol.2019.05.072

    Article  Google Scholar 

  52. Levi MD (1973) Errors in the variables bias in the presence of correctly measured variables. Econometrica. https://doi.org/10.2307/1913819

    Article  Google Scholar 

  53. Liu Y, Ye L, Qin H, Hong X, Ye J, Yin X (2018) Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression. J Hydrol. https://doi.org/10.1016/j.jhydrol.2018.03.057

    Article  Google Scholar 

  54. Luo X, Yuan X, Zhu S, Xu Z, Meng L, Peng J (2019) A hybrid support vector regression framework for streamflow forecast. J Hydrol. https://doi.org/10.1016/j.jhydrol.2018.10.064

    Article  Google Scholar 

  55. Madigan D, Raftery AE (1994) Model selection and accounting for model uncertainty in graphical models using occam’s window. J Am Stat Assoc. https://doi.org/10.1080/01621459.1994.10476894

    Article  Google Scholar 

  56. Makkonen L (2006) Plotting positions in extreme value analysis. J Appl Meteorol Climatol. https://doi.org/10.1175/JAM2349.1

    Article  Google Scholar 

  57. MARFC (2010) Understanding the River Forecast Process, NWS Middle Atlantic River Forecast Center, State College, PA. https://www.weather.gov/media/marfc/FactSheets/Fact_Sheet_Understanding_River_Forecast_Process_FINAL_singlepgs.pdf, Accessed 02 June 2021

  58. Muhammad A, Stadnyk TA, Unduche F, Coulibaly P (2018) Multi-model approaches for improving seasonal ensemble streamflow prediction scheme with various statistical post-processing techniques in the Canadian Prairie Region. Water (Switzerland). https://doi.org/10.3390/w10111604

    Article  Google Scholar 

  59. Murphy AH, Winkler RL (1987) A general framework for forecast verification. Mon Weather Rev. https://doi.org/10.1175/1520-0493(1987)115%3c1330:AGFFFV%3e2.0.CO;2

    Article  Google Scholar 

  60. National Weather Service (2006) NWSRFS User Manual Documentation. Office of Hydrologic Development, Silver Spring, MD. https://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/htm/warnpdf.php

  61. National Weather Service (2008a) Single reservoir regulation (RES-SNGL) model. In: Office of Water Prediction (NWS OWP/NOAA). https://www.nws.noaa.gov/oh/hrl/general/chps/Models/Single_Reservoir_Regulation.pdf. Accessed 30 Jan 2017

  62. National Weather Service (2008b) Joint reservoir regulation (RES-J) model. In: Office of Water Prediction (NWS OWP/NOAA). http://www.nws.noaa.gov/oh/hrl/general/chps/Models/Joint_Reservoir_Regulation.pdf. Accessed 30 Jan 2017

  63. National Weather Service (2015) ensemble postprocessor (EnsPost) user’s manual. Office of Hydrologic Development, Silver Spring. https://www.nws.noaa.gov/oh/hrl/general/HEFS_doc/EnsPost_Users_Manual.pdf. Accessed 04 Apr 2015

  64. National Weather Service (2016) meteorological ensemble forecast processor (MEFP) user’s manual. Office of Hydrologic Development, Silver Spring. https://www.nws.noaa.gov/oh/hrl/general/HEFS_doc/MEFP_Users_Manual.pdf

  65. Nelson BR, Seo D-J, Kim D (2010) Multisensor precipitation reanalysis. J Hydrometeorol 11:666–682. https://doi.org/10.1175/2010JHM1210.1

    Article  Google Scholar 

  66. Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev. https://doi.org/10.1175/MWR2906.1

    Article  Google Scholar 

  67. Raftery AE, Hoeting J, Volinsky CT et al (2015) BMA: Bayesina model averaging. http://cran.r-project.org/package=BMA

  68. Raiffa H, Schlaifer R (1961) Applied statistical decision theory. Harvard University Press, Boston

    Google Scholar 

  69. Regonda SK, Seo DJ, Lawrence B et al (2013) Short-term ensemble streamflow forecasting using operationally-produced single-valued streamflow forecasts: a Hydrologic Model Output Statistics (HMOS) approach. J Hydrol. https://doi.org/10.1016/j.jhydrol.2013.05.028

    Article  Google Scholar 

  70. Roe J, Dietz C, Restrepo P et al (2010) NOAA’s community hydrologic prediction system. In: 2th federal interagency hydrologic modeling conference, Las Vegas, NV. https://acwi.gov/sos/pubs/2ndJFIC/Contents/7E_Roe_12_28_09.pdf

  71. Schaake J, Demargne J, Hartman R et al (2007) Precipitation and temperature ensemble forecasts from single-value forecasts. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hessd-4-655-2007

  72. Schweppe FC (1973) Uncertain dynamic systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  73. Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, Hoboken

    Book  Google Scholar 

  74. Seo DJ (2013) Conditional bias-penalized kriging (CBPK). Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-012-0567-z

    Article  Google Scholar 

  75. Seo D-J, Herr HD, Schaake JC (2006) A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hessd-3-1987-2006

  76. Seo DJ, Siddique R, Zhang Y, Kim D (2014) Improving real-time estimation of heavy-to-extreme precipitation using rain gauge data via conditional bias-penalized optimal estimation. J Hydrol. https://doi.org/10.1016/j.jhydrol.2014.09.055

    Article  Google Scholar 

  77. Seo D-J, Saifuddin MM, Lee H (2018a) Conditional bias-penalized Kalman filter for improved estimation and prediction of extremes. Stoch Environ Res Risk Assess 32:183–201. https://doi.org/10.1007/s00477-017-1442-8

    Article  Google Scholar 

  78. Seo D-J, Saifuddin MM, Lee H (2018b) Correction to: Conditional bias-penalized Kalman filter for improved estimation and prediction of extremes. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-018-1626-x

    Article  Google Scholar 

  79. Shen H, Lee H, Seo D-J (2019) Adaptive conditional bias-penalized kalman filter for improved estimation of extremes and its approximation for reduced computation. arXiv:1908.00482

  80. Siddique R, Mejia A, Brown J et al (2015) Verification of precipitation forecasts from two numerical weather prediction models in the Middle Atlantic Region of the USA: a precursory analysis to hydrologic forecasting. J Hydrol. https://doi.org/10.1016/j.jhydrol.2015.08.042

    Article  Google Scholar 

  81. Sittner WT, Schauss CE, Monro JC (1969) Continuous hydrograph synthesis with an API-type hydrologic model. Water Resour Res. https://doi.org/10.1029/WR005i005p01007

    Article  Google Scholar 

  82. Theil H (1961) Economic forecasts and policy. North-Holland Pub. Co., Amsterdam

    Google Scholar 

  83. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  Google Scholar 

  84. Tibshirani R (1997) The lasso method for variable selection in the cox model. Stat Med. https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4%3c385::AID-SIM380%3e3.0.CO;2-3

    Article  Google Scholar 

  85. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston and Sons, Washington

    Google Scholar 

  86. Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG (1995) Numerical methods for the solution of ill-posed problems

  87. Toth Z, Kalnay E (1997) Ensemble forecasting at NCEP and the breeding method. Mon Weather Rev. https://doi.org/10.1175/1520-0493(1997)125%3c3297:EFANAT%3e2.0.CO;2

    Article  Google Scholar 

  88. Wilks DS (2005) Statistical methods in the atmospheric sciences, 2nd edn. Academic Press, London

    Google Scholar 

  89. Wu L, Seo DJ, Demargne J et al (2011) Generation of ensemble precipitation forecast from single-valued quantitative precipitation forecast for hydrologic ensemble prediction. J Hydrol. https://doi.org/10.1016/j.jhydrol.2011.01.013

    Article  Google Scholar 

  90. Zeugner S (2011) Bayesian model averaging with BMS. WwwCranR-ProductOrg

  91. Zhu Y, Toth Z (2008) NAEFS and NCEP global ensemble. Presentation for National DOH Workshop. https://www.nws.noaa.gov/oh/hrl/hsmb/docs/hep/events_announce/NAEFS_Yuejian_Zhu.pdf

Download references

Acknowledgements

This material is based upon work supported in part by the NOAA’s Joint Technology Transfer Initiative Program (Grant NA16OAR4590232). This support is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Jozaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jozaghi, A., Shen, H., Ghazvinian, M. et al. Multi-model streamflow prediction using conditional bias-penalized multiple linear regression. Stoch Environ Res Risk Assess (2021). https://doi.org/10.1007/s00477-021-02048-3

Download citation

Keywords

  • Multiple linear regression
  • Conditional bias
  • Multi-model prediction
  • Streamflow