Developing reservoir evaporation predictive model for successful dam management

Abstract

Evaporation is a primary component of the hydrological cycle, water resources management and forward planning. The succeed management for the dam system is based on the accurate prediction of the reservoir evaporation magnitude. Physical models applied in the prediction of evaporation can encounter obstacles in respect to accurate estimations of evaporation due to the inherent challenges in respect to the mathematical procedure that could fail to address the natural processes and initial conditions that drive the evaporation patterns. To address these limitations, the present study aims to design a new model using the modified Coactive Neuro-Fuzzy Inference System (CANFIS) algorithm to improve feature extraction process in a purely data-driven model. The new approach comprised of the adjustments made to the back-propagation algorithm, allowing the automatic updating of the membership rules and hence, providing the center-weighted set rather than the global weight sets for input-target feature mapping. The predictive ability of the modified CANIFIS model is benchmarked in respect to the conventional ANFIS, SVR and RBF-NN model by statistical performance metrics. To explore its efficiency, the modified CANFIS method is applied for evaporation prediction in two diverse climatic environments. The results revealed the superiority of the modified CANFIS model for evaporation prediction in both Aswan High Dam (AHD) and Timah Tasoh Dam (TTD). The statistical indicators supported the better performance of the modified CANFIS model, which significantly outperforms other proposed models to attain relative error value less than (23% for AHD, 20% for TTD), MAE (12.72 mm month−1 for AHD, 7.63 mm month−1 for TTD), RMSE (15.42 mm month−1 for AHD, 8.53 mm month−1 for TTD) and a relative large coefficient of determination (0.96 for AHD, 0.91 for TTD).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alecsandru C, Ishak S (2004) Hybrid model-based and memory-based traffic prediction system. Transp Res Rec J Transp Res Board 1879:59–70. https://doi.org/10.3141/1879-08

    Article  Google Scholar 

  2. Aljanabi QA, Chik Z, Allawi MF et al (2017) Support vector regression-based model for prediction of behavior stone column parameters in soft clay under highway embankment. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2807-5

    Article  Google Scholar 

  3. Allawi MF, El-Shafie A (2016) Utilizing RBF-NN and ANFIS methods for multi-lead ahead prediction model of evaporation from reservoir. Water Resour Manag 30:4773–4788. https://doi.org/10.1007/s11269-016-1452-1

    Article  Google Scholar 

  4. Allawi MF, Jaafar O, Mohamad Hamzah F et al (2017) Reservoir inflow forecasting with a modified coactive neuro-fuzzy inference system: a case study for a semi-arid region. Theor Appl Climatol. https://doi.org/10.1007/s00704-017-2292-5

    Article  Google Scholar 

  5. Allawi MF, Jaafar O, Ehteram M et al (2018a) Synchronizing artificial intelligence models for operating the dam and reservoir system. Water Resour Manag. https://doi.org/10.1007/s11269-018-1996-3

    Article  Google Scholar 

  6. Allawi MF, Jaafar O, Mohamad Hamzah F et al (2018b) Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-1867-8

    Article  Google Scholar 

  7. Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst Appl 36:7624–7629. https://doi.org/10.1016/j.eswa.2008.09.053

    Article  Google Scholar 

  8. Bozorg-Haddad O, Zarezadeh-Mehrizi M, Abdi-Dehkordi M et al (2016) A self-tuning ANN model for simulation and forecasting of surface flows. Water Resour Manag 30:2907–2929. https://doi.org/10.1007/s11269-016-1301-2

    Article  Google Scholar 

  9. Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:327–355

    Google Scholar 

  10. Budu K (2014) Comparison of wavelet-based ANN and regression models for reservoir inflow forecasting. J Hydrol Eng 19:1385–1400. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000892

    Article  Google Scholar 

  11. Cooley KR (1983) Evaporation reduction: summary of long-term tank studies. J Irrig Drain Eng 109:89–98. https://doi.org/10.1061/(ASCE)0733-9437(1983)109:1(89)

    Article  Google Scholar 

  12. Deo RC, Samui P (2017) Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City. J Hydrol Eng 22:5017003. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001506

    Article  Google Scholar 

  13. Deo RC, Samui P, Kim D (2016) Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch Environ Res Risk Assess 30:1769–1784. https://doi.org/10.1007/s00477-015-1153-y

    Article  Google Scholar 

  14. El-Shafie A, Noureldin A (2011) Generalized versus non-generalized neural network model for multi-lead inflow forecasting at Aswan High Dam. Hydrol Earth Syst Sci 15:841–858. https://doi.org/10.5194/hess-15-841-2011

    Article  Google Scholar 

  15. Eray O, Mert C, Kisi O (2017) Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation. Hydrol Res nh2017076. https://doi.org/10.2166/nh.2017.076

    Article  Google Scholar 

  16. Ghorbani MA, Deo RC, Yaseen ZM et al (2017) Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theor Appl Climatol. https://doi.org/10.1007/s00704-017-2244-0

    Article  Google Scholar 

  17. Guo J, Zhou J, Qin H et al (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38:13073–13081. https://doi.org/10.1016/j.eswa.2011.04.114

    Article  Google Scholar 

  18. Guven A, Kişi Ö (2011) Daily pan evaporation modeling using linear genetic programming technique. Irrig Sci 29:135–145

    Article  Google Scholar 

  19. Hanafy TOS, Hanafy TOS (2014) A new algorithm to model highly nonlinear system based coactive neuro fuzzy inference system. Int J Comput Appl 94:9–20

    Google Scholar 

  20. Hidalgo IG, Barbosa PSF, Francato AL et al (2015) Management of inflow forecasting studies. Water Pract Technol 10:402. https://doi.org/10.2166/wpt.2015.050

    Article  Google Scholar 

  21. Hosseinzadeh Talaee P, Tabari H, Abghari H (2014) Pan evaporation and reference evapotranspiration trend detection in western Iran with consideration of data persistence. Hydrol Res 45:213. https://doi.org/10.2166/nh.2013.058

    Article  Google Scholar 

  22. Izadbakhsh MA, Javadikia H (2014) Application of hybrid FFNN-genetic algorithm for predicting evaporation in storage dam reservoirs. Agric Commun 2:57–62

    Google Scholar 

  23. Jang JSR, Sun CT (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  24. Kashiwao T, Nakayama K, Ando S et al (2017) A neural network-based local rainfall prediction system using meteorological data on the Internet: a case study using data from the Japan Meteorological Agency. Appl Soft Comput J 56:317–330. https://doi.org/10.1016/j.asoc.2017.03.015

    Article  Google Scholar 

  25. Keshtegar B, Allawi MF, Afan HA, El-Shafie A (2016) Optimized river stream-flow forecasting model utilizing high-order response surface method. Water Resour Manag 30:3899–3914. https://doi.org/10.1007/s11269-016-1397-4

    Article  Google Scholar 

  26. Keskin ME, Terzi Ö (2006) Artificial neural network models of daily pan evaporation. J Hydrol Eng 11:65–70. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65)

    Article  Google Scholar 

  27. Keskin ME, Terzi Ö, Taylan D (2004) Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey (Estimation de l’évaporation journalière du bac dans l’Ouest de la Turquie par des modèles à base de logique floue). Hydrol Sci J 4:9. https://doi.org/10.1623/hysj.49.6.1001.55718

    Article  Google Scholar 

  28. Kişi Ö (2006) Daily pan evaporation modelling using a neuro-fuzzy computing technique. J Hydrol 329:636–646. https://doi.org/10.1016/j.jhydrol.2006.03.015

    Article  Google Scholar 

  29. Kişi Ö, Tombul M (2013) Modeling monthly pan evaporations using fuzzy genetic approach. J Hydrol 477:203–212. https://doi.org/10.1016/j.jhydrol.2012.11.030

    Article  Google Scholar 

  30. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    Google Scholar 

  31. Lohani AK, Kumar R, Singh RD (2012) Hydrological time series modeling: a comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. J Hydrol 442:23–35. https://doi.org/10.1016/j.jhydrol.2012.03.031

    Article  Google Scholar 

  32. Lu X, Ju Y, Wu L et al (2018) Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models. J Hydrol 566:668–684. https://doi.org/10.1016/j.jhydrol.2018.09.055

    Article  Google Scholar 

  33. Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15:101–124. https://doi.org/10.1016/S1364-8152(99)00007-9

    Article  Google Scholar 

  34. Majhi B, Naidu D (2020) Pan evaporation modeling in different agroclimatic zones using functional link artificial neural network. Inf Process Agric. https://doi.org/10.1016/j.inpa.2020.02.007

    Article  Google Scholar 

  35. Majhi B, Naidu D, Mishra AP, Satapathy SC (2019) Improved prediction of daily pan evaporation using Deep-LSTM model. Neural Comput Appl 32:7823–7838. https://doi.org/10.1007/s00521-019-04127-7

    Article  Google Scholar 

  36. Mekanik F, Imteaz MA, Talei A (2016) Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals. Clim Dyn 46:3097–3111. https://doi.org/10.1007/s00382-015-2755-2

    Article  Google Scholar 

  37. Memarian H, Pourreza Bilondi M, Rezaei M (2016) Drought prediction using co-active neuro-fuzzy inference system, validation, and uncertainty analysis (case study: Birjand, Iran). Theor Appl Climatol 125:541–554. https://doi.org/10.1007/s00704-015-1532-9

    Article  Google Scholar 

  38. Moghaddamnia A, Ghafari M, Piri J, Han D (2009a) Evaporation estimation using support vector machines technique. Int J Eng Appl Sci 5:415–423

    Google Scholar 

  39. Moghaddamnia A, Ghafari Gousheh M, Piri J et al (2009b) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32:88–97. https://doi.org/10.1016/j.advwatres.2008.10.005

    CAS  Article  Google Scholar 

  40. Mohamadi S, Ehteram M, El-Shafie A (2020) Accuracy enhancement for monthly evaporation predicting model utilizing evolutionary machine learning methods. Int J Environ Sci Technol 17:3373–3396. https://doi.org/10.1007/s13762-019-02619-6

    Article  Google Scholar 

  41. Nourani V, Fard M (2012) Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv Eng Softw 47:127–146

    Article  Google Scholar 

  42. Nourani V, Kisi Ö, Komasi M (2011) Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process. J Hydrol 402:41–59. https://doi.org/10.1016/j.jhydrol.2011.03.002

    Article  Google Scholar 

  43. Nourani V, Sayyah Fard M (2012) Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv Eng Softw 47:127–146. https://doi.org/10.1016/J.ADVENGSOFT.2011.12.014

    Article  Google Scholar 

  44. Omar MH, El-Bakry MM (1981) Estimation of evaporation from the lake of the Aswan High Dam (Lake Nasser) based on measurements over the lake. Agric Meteorol 23:293–308. https://doi.org/10.1016/0002-1571(81)90115-1

    Article  Google Scholar 

  45. Patil S, Valunjkar S (2016) Utility of coactive neuro-fuzzy inference system for runoff prediction in comparison with multilayer perception. Int J Eng Res 8:156–160. https://doi.org/10.17950/ijer/v5i1/036

    Article  Google Scholar 

  46. Penman H (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond 193:120–145

    CAS  Google Scholar 

  47. Piri J, Amin S, Moghaddamnia A (2009) Daily pan evaporation modeling in a hot and dry climate. J Hydrol 14:803–81

    Google Scholar 

  48. Saemi M, Ahmadi M (2008) Integration of genetic algorithm and a coactive neuro-fuzzy inference system for permeability prediction from well logs data. Transp Porous Media 71:273–288. https://doi.org/10.1007/s11242-007-9125-4

    Article  Google Scholar 

  49. Salih SQ, Allawi MF, Yousif AA et al (2019) Viability of the advanced adaptive neuro-fuzzy inference system model on reservoir evaporation process simulation: case study of Nasser Lake in Egypt. Eng Appl Comput Fluid Mech 13:878–891. https://doi.org/10.1080/19942060.2019.1647879

    Article  Google Scholar 

  50. Tabari H, Marofi S, Sabziparvar A (2010a) Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig Sci 28:399–406

    Article  Google Scholar 

  51. Tabari H, Marofi S, Sabziparvar A-A (2010b) Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig Sci 28:399–406. https://doi.org/10.1007/s00271-009-0201-0

    Article  Google Scholar 

  52. Tabari H, Hosseinzadeh Talaee P, Abghari H (2012) Utility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison with multilayer perceptron. Meteorol Atmos Phys 116:147–154. https://doi.org/10.1007/s00703-012-0184-x

    Article  Google Scholar 

  53. Wu L, Huang G, Fan J et al (2020) Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput Electron Agric 168:105115. https://doi.org/10.1016/j.compag.2019.105115

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the datasets provided by Nile Water Authority (NWA) and Aswan High Dam Authority (AHDA), Ministry of Water Resources and Irrigation, Egypt and Water Resources Management and Hydrology Division, Department of Irrigation and Drainage (DID), Malaysia. We would like to thank the University of Malaya Research Grant (UMRG) coded RP025A-18SUS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammed Falah Allawi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allawi, M.F., Ahmed, M.L., Aidan, I.A. et al. Developing reservoir evaporation predictive model for successful dam management. Stoch Environ Res Risk Assess 35, 499–514 (2021). https://doi.org/10.1007/s00477-020-01918-6

Download citation

Keywords

  • Reservoir
  • Evaporation
  • Different climatic regions
  • AI-models