Skip to main content

Advertisement

Log in

Influence of output size of stochastic weather generators on common climate and hydrological statistical indices

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

While Stochastic Weather Generators (SWGs) are used intensively in climate and hydrological applications to simulate hydroclimatic time series and estimate risks and performance measures linked to climate variability, there have been few investigations into how many realizations are required for a robust estimation of these measures. Given the computational cost and time necessary to force climate-sensitive systems with multiple realizations, the estimation of the optimal number of synthetic time series to generate with a particular SWG for a predefined accuracy when estimating a particular risk or performance measure is particularly important. In this paper, the required number of realizations of five SWGs coupled with a SWAT model (the Soil and Water Assessment Tool) needed in order to achieve a predefined Relative Root Mean Square Error is investigated. The statistical indices used are the mean, standard deviation, skewness, and kurtosis of four hydroclimatic variables: precipitation, maximum and minimum temperature, and annual streamflow obtained for each observed and model-generated time series. While the results vary somewhat across SWGs, variables and indicators, they overall show that the marginal improvement decreases dramatically after 25 realizations. The results also indicate that the benefit of generating more than 100 realizations of climate and streamflow data is very minimal. The methodology presented herein can be applied in further investigations of other set of risk indicators, SWGs, hydrological models, and watersheds to minimize the required workload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ailliot P, Allard D, Monbet V, Naveau P (2015) Stochastic weather generators: an overview of weather type models. J de la Soc Française de Stat 156(1):101–113

    Google Scholar 

  • Alhassoun S, Sendil U, Al-Othman AA, Negm AM (1997) Stochastic generation of annual and monthly evaporation in Saudi Arabia. Can Water Resour J 22(2):141–154

    Article  Google Scholar 

  • Al-Mukhtar M, Dunger V, Merkel B (2014) Evaluation of the climate generator model CLIGEN for rainfall data simulation in Bautzen catchment area, Germany. Hydrol Res 45(4–5):615–630

    Article  Google Scholar 

  • Alodah A (2015). Development of Climate Change Scenarios for the South Nation Watershed. M.A.Sc. Thesis, Civil Engineering, Université d’Ottawa/University of Ottawa. http://dx.doi.org/10.20381/ruor-2801

  • Alodah A (2019). Stochastic assessment of climate-induced risk for water resources systems in a bottom-up framework. Doctoral dissertation. Civil Engineering, Université d’Ottawa/University of Ottawa. http://dx.doi.org/10.20381/ruor-24004

  • Alodah A, Seidou O (2019a) The adequacy of stochastically generated climate time series for water resources systems risk and performance assessment. Stoch Environ Res Risk Assess 33(1):253–269. https://doi.org/10.1007/s00477-018-1613-2

    Article  Google Scholar 

  • Alodah A, Seidou O (2019b) Assessment of climate change impacts on extreme high and low flows: an improved bottom-up approach. Water 11(6):1236. https://doi.org/10.3390/w11061236

    Article  Google Scholar 

  • Anyah RO, Semazzi FHM (2006) Climate variability over the Greater Horn of Africa based on NCAR AGCM ensemble. Theoret Appl Climatol 86(1–4):39–62

    Article  Google Scholar 

  • Apipattanavis S, Bert F, Podestá G, Rajagopalan B (2010) Linking weather generators and crop models for assessment of climate forecast outcomes. Agric For Meteorol 150(2):166–174

    Article  Google Scholar 

  • Baffault C, Nearing MA, Nicks AD (1996) Impact of CLIGEN parameters on WEPP-predicted average annual soil loss. Trans ASAE 39(2):447–457

    Article  Google Scholar 

  • Bastola S, Murphy C, Fealy R (2012) Generating probabilistic estimates of hydrological response for Irish catchments using a weather generator and probabilistic climate change scenarios. Hydrol Process 26(15):2307–2321

    Article  Google Scholar 

  • Benoit L, Vrac M, Mariethoz G (2019) Accounting for rain type non-stationarity in sub-daily stochastic weather generators. Hydrol. Earth Syst. Sci. Discuss. https://doi.org/10.5194/hess-2019-562

    Article  Google Scholar 

  • Box G, Jenkins G (1976) Time series analysis, forecasting and control, 2nd edn. Holden-Day, San Francisco

    Google Scholar 

  • Breinl K, Di Baldassarre G, Girons Lopez M, Hagenlocher M, Vico G, Rutgersson A (2017) Can weather generation capture precipitation patterns across different climates, spatial scales and under data scarcity? Sci Rep 7(1):5449

    Article  CAS  Google Scholar 

  • Brown C, Werick W, Leger W, Fay D (2011) A decision-analytic approach to managing climate risks: application to the Upper Great Lakes 1. JAWRA J Am Water Resour Assoc 47(3):524–534

    Article  Google Scholar 

  • Buishand TA (1977) Stochastic modelling of daily rainfall sequences (Doctoral dissertation, Veenman)

  • Candela L, Tamoh K, Olivares G, Gomez M (2012) Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain). Sci Total Environ 440:253–260

    Article  CAS  Google Scholar 

  • Caron A, Leconte R, Brissette F (2008) An improved stochastic weather generator for hydrological impact studies. Can Water Resour J 33:233–256

    Article  Google Scholar 

  • Chen J, Brissette FP (2014) Comparison of five stochastic weather generators in simulating daily precipitation and temperature for the loess plateau of China. Int J Climatol 34(10):3089–3105

    Article  Google Scholar 

  • Chen J, Brissette FP, Leconte R (2010) A daily stochastic weather generator for preserving low-frequency of climate variability. J Hydrol 388(3–4):480–490

    Article  Google Scholar 

  • Chen J, Brissette FP, Leconte R, Caron A (2012) A versatile weather generator for daily precipitation and temperature. Trans ASABE 55(3):895–906

    Article  Google Scholar 

  • Chen JF, Brissette X, Zhang J (2014) A multi-site stochastic weather generator for daily precipitation and temperature. Trans ASABE 2014:1375–1391. https://doi.org/10.13031/trans.57.10685

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Earlbaum Associates, Hillsdale

    Google Scholar 

  • Criss RE, Winston WE (2008) Do Nash values have value? Discussion and alternate proposals. Hydrol Process 22(14):2723–2725. https://doi.org/10.1002/hyp.7072

    Article  Google Scholar 

  • Cunha A Jr, Nasser R, Sampaio R, Lopes H, Breitman K (2014) Uncertainty quantification through the Monte Carlo method in a cloud computing setting. Comput Phys Commun 185(5):1355–1363

    Article  CAS  Google Scholar 

  • Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3):527–546. https://doi.org/10.1007/s00382-010-0977-x

    Article  Google Scholar 

  • Dubrovský M, Buchtele J, Žalud Z (2004) High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling. Clim Change 63(1–2):145–179

    Article  Google Scholar 

  • Eames M, Kershaw T, Coley D (2012) A comparison of future weather created from morphed observed weather and created by a weather generator. Build Environ 56:252–264

    Article  Google Scholar 

  • Elliot W, Arnold C (2001) Validation of the weather generator CLIGEN with precipitation data from Uganda. Trans ASAE 44:53–58

    Article  Google Scholar 

  • Fatichi S, Ivanov VY, Paschalis A, Peleg N, Molnar P, Rimkus S, Kim J, Burlando P, Caporali E (2016) Uncertainty partition challenges the predictability of vital details of climate change. Earth’s Future 4(5):240–251. https://doi.org/10.1002/2015EF000336

    Article  Google Scholar 

  • Fodor N, Dobi I, Mika J, Szeidl L (2013) Applications of the MVWG multivariable stochastic weather generator. Sci World J. https://doi.org/10.1155/2013/571367

    Article  Google Scholar 

  • Furrer EM, Katz RW (2008) Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resour Res. https://doi.org/10.1029/2008WR007316

    Article  Google Scholar 

  • Gabriel KR, Neumann J (1962) A Markov chain model for daily rainfall occurrence at Tel Aviv. Q J R Meteorol Soc 88:90–95

    Article  Google Scholar 

  • Gitau MW, Chiang LC, Sayeed M, Chaubey I (2012) Watershed modeling using large-scale distributed computing in Condor and the Soil and Water Assessment Tool model. Simulation 88(3):365–380

    Article  Google Scholar 

  • Gitau MW, Mehan S, Guo T (2018) Weather generator effectiveness in capturing climate extremes. Environ Process 5(1):153–165

    Article  CAS  Google Scholar 

  • Glass GV (1976) Primary, secondary, and meta-analysis of research. Educ Res 5(10):3–8

    Article  Google Scholar 

  • Goyal MK, Burn DH, Ojha CSP (2013) Precipitation simulation based on k-nearest neighbor approach using gamma kernel. J Hydrol Eng 18:481–487

    Article  Google Scholar 

  • Guenni L (1994) Spatial interpolation of the parameters of stochastic weather models. Climate Change, Uncertainty and Decision Making, Institute for Risk Research, University of Waterloo, Ontario and IGBP-BAHC, Berlin, 61–79

  • Guo T, Mehan S, Gitau MW, Wang Q, Kuczek T, Flanagan DC (2018) Impact of number of realizations on the suitability of simulated weather data for hydrologic and environmental applications. Stoch Environ Res Risk Assess 32(8):2405–2421

    Article  Google Scholar 

  • Han B, Benner SG, Flores AN (2019) Including Variability across Climate Change Projections in Assessing Impacts on Water Resources in an Intensively Managed Landscape. Water 11(2):286

    Article  Google Scholar 

  • Hansen JW, Ines AV (2005) Stochastic disaggregation of monthly rainfall data for crop simulation studies. Agric For Meteorol 131:233–246

    Article  Google Scholar 

  • Hayhoe HN (1998) Relationship between weather variables in observed and WXGEN generated data series. Agric For Meteorol 90:203–214

    Article  Google Scholar 

  • Hayhoe HN (2000) Improvements of stochastic weather data generators for diverse climates. Clim Res 14(2):75–87. https://doi.org/10.3354/cr014075

    Article  Google Scholar 

  • Ivanov VY, Bras RL, Curtis DC (2007) A weather generator for hydrological, ecological, and agricultural applications. Water Resour Res 43(W10):406. https://doi.org/10.1029/2006WR005,364

    Article  Google Scholar 

  • Jeong DI, St-Hilaire A, Ouarda TB, Gachon P (2012) Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator. Clim Change 114(3–4):567–591

    Article  Google Scholar 

  • Kilsby CG, Jones PD, Burton A, Ford AC, Fowler HJ, Harpham C, Wilby RL (2007) A daily weather generator for use in climate change studies. Environ Model Softw 22(12):1705–1719

    Article  Google Scholar 

  • Kim BS, Kim HS, Seoh BH, Kim NW (2007) Impact of climate change on water resources in Yongdam Dam Basin, Korea. Stoch Environ Res Risk Assess 21:355

    Article  Google Scholar 

  • Kim J, Tanveer ME, Bae DH (2018) Quantifying climate internal variability using an hourly ensemble generator over South Korea. Stoch Environ Res Risk Assess 32(11):3037–3051

    Article  Google Scholar 

  • Kou X, Ge J, Wang Y, Zhang C (2007) Validation of the weather generator CLIGEN with daily precipitation data from the Loess Plateau, China. J Hydrol 347(3–4):347–357

    Article  Google Scholar 

  • Kwon HH, Sivakumar B, Moon YI, Kim BS (2011) Assessment of change in design flood frequency under climate change using a multivariate downscaling model and a precipitation-runoff model. Stoch Environ Res Risk Assess 25(4):567–581

    Article  Google Scholar 

  • Mehan S, Guo T, Gitau M, Flanagan DC (2017) Comparative study of different stochastic weather generators for long-term climate data simulation. Climate 5(2):26

    Article  Google Scholar 

  • Mehrotra R, Srikanthan R, Sharma A (2006) A comparison of three stochastic multi-site precipitation occurrence generators. J Hydrol 331(1–2):280–292

    Article  Google Scholar 

  • Min YM, Kryjov VN, An KH, Hameed SN, Sohn SJ, Lee WJ, Oh JH (2011) Evaluation of the weather generator CLIGEN with daily precipitation characteristics in Korea. Asia-Pacific J Atmos Sci 47(3):255–263

    Article  Google Scholar 

  • Minville M, Brissette F, Leconte R (2008) Uncertainty of the impact of climate change on the hydrology of a nordic watershed. J Hydrol 358:70–83

    Article  Google Scholar 

  • Mithen S, Black E (2011) Water, life and civilisation: climate, environment and society in the Jordan Valley. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mukundan R, Acharya N, Gelda RK, Frei A, Owens EM (2019) Modeling streamflow sensitivity to climate change in New York City water supply streams using a stochastic weather generator. J Hydrol: Reg Stud 21:147–158

    Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute

  • Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham V (2000) Rainfall modelling using Poisson-cluster processes: a review of developments. Stoch Environ Res Risk Assess 14(6):384–411

    Article  Google Scholar 

  • Oriani F, Straubhaar J, Renard P, Mariethoz G (2014) Simulation of rainfall time-series from different climatic regions using the direct sampling technique. Hydrol Earth Syst Sci Discuss 11:3213–3247

    Article  Google Scholar 

  • Ott RL, Longnecker MT (2015) An introduction to statistical methods and data analysis. Thomson Learning, Inc. Duxbury, Pacific Grove, CA, Nelson Education

  • Panagoulia D (2006) Artificial neural networks and high and low flows in various climate regimes. Hydrol Sci J 51(4):563–587

    Article  Google Scholar 

  • Panagoulia D, Tsekouras GJ, Kousiouris G (2017) A multi-stage methodology for selecting input variables in ANN forecasting of river flows. Glob Nest J 19:49–57

    Article  Google Scholar 

  • Peleg N, Fatichi S, Paschalis A, Molnar P, Burlando P (2017) An advanced stochastic weather generator for simulating 2-D high-resolution climate variables. J Adv Model Earth Syst 9(3):1595–1627

    Article  Google Scholar 

  • Qian B, Gameda S, Hayhoe H, De Jong R, Bootsma A (2004) Comparison of LARS-WG and AAFC-WG stochastic weather generators for diverse Canadian climates. Clim Res 26(3):175–191

    Article  Google Scholar 

  • Racsko P, Szeidl L, Semenov M (1991) A serial approach to local stochastic weather models. Ecol Model 57(1–2):27–41

    Article  Google Scholar 

  • Räisänen J, Ruokolainen L (2006) Probabilistic forecasts of near-term climate change based on a resampling ensemble technique. Tellus A: Dyn Meteorol Oceanogr 58(4):461–472

    Article  Google Scholar 

  • Richardson CW (1981) Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour Res 17(1):182–190

    Article  Google Scholar 

  • Rodriguez-Iturbe I, Cox DR, Isham V (1987) Some models for rainfall based on stochastic point processes. Proc R Soc Lond A. Math Phys Sci 410(1839):269–288

    Google Scholar 

  • Rosnow RL, Rosenthal R (1996) Computing contrasts, effect sizes, and counternulls on other people’s published data: general procedures for research consumers. Pyschol Methods 1:331–340

    Article  Google Scholar 

  • Santer BD, Thorne PW, Haimberger L, Taylor KE, Wigley TML, Lanzante JR, Karl TR (2008) Consistency of modelled and observed temperature trends in the tropical troposphere. Int J Climatol: J R Meteorol Soc 28(13):1703–1722

    Article  Google Scholar 

  • Schoof JT, Pryor SC (2008) On the proper order of markov chain model for daily precipitation occurrence in the contiguous United States. J Appl Meteorol Climatol 47(9):2477–2486. https://doi.org/10.1175/2008JAMC1840.1

    Article  Google Scholar 

  • Semenov MA (2008) Simulation of extreme weather events by a stochastic weather generator. Clim Res 35(3):203–212

    Article  Google Scholar 

  • Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Change 35:397–414

    Article  Google Scholar 

  • Semenov MA, Brooks RJ, Barrow EM, Richardson CW (1998) Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res 10(2):95–107

    Article  Google Scholar 

  • Sharif M, Burn DH (2007) Improved K-nearest neighbor weather generating model. J Hydrol Eng 12(1):42–51

    Article  Google Scholar 

  • Smith BJ (2007) BOA: an R package for MCMC output convergence assessment and posterior inference. J Stat Softw 21(11):1–37

    Article  Google Scholar 

  • Soltani A, Hoogenboom G (2003a) A statistical comparison of the stochastic weather generators WGEN and SIMMETEO. Clim Res 24(3):215–230

    Article  Google Scholar 

  • Soltani A, Hoogenboom G (2003b) Minimum data requirements for parameter estimation of stochastic weather generators. Clim Res 25(2):109–119. https://doi.org/10.3354/cr025109

    Article  Google Scholar 

  • Steinschneider S, Brown C (2013) A semiparametric multivariate, multisite weather generator with low-frequency variability for use in climate risk assessments. Water Resour Res 49(11):7205–7220

    Article  Google Scholar 

  • Stevens T, Madani K (2016) Future climate impacts on maize farming and food security in Malawi. Sci Rep 6:36241

    Article  CAS  Google Scholar 

  • Stowasser Markus (2012) Modelling rain risk: a multi-order markov chain model approach. J Risk Finance 13(1):45–60

    Article  Google Scholar 

  • Thompson C, Thomson P, Zheng X (2007) Fitting a multisite rainfall model to New Zealand data. J Hydrol 340:25–39

    Article  Google Scholar 

  • Thompson DWJ, Barnes EA, Deser C, Foust WE, Phillips AS (2015) Quantifying the role of internal climate variability in future climate trends. J Clim 28(16):6443–6456. https://doi.org/10.1175/JCLI-D-14-00830.1

    Article  Google Scholar 

  • Todorovic P, Woolhiser DA (1975) A stochastic model of n-day precipitation. J Appl Meteorol 14:17–24

    Article  Google Scholar 

  • Vacha-Haase T, Thompson B (2004) How to estimate and interpret various effect sizes. J Couns Psychol 51:473–481. https://doi.org/10.1037/0022-0167.51.4.473

    Article  Google Scholar 

  • Vesely FM, Paleari L, Movedi E, Bellocchi G, Confalonieri R (2019) Quantifying uncertainty due to stochastic weather generators in climate change impact studies. Sci Rep 9:1–8

    Article  CAS  Google Scholar 

  • Vu TM, Mishra AK, Konapala G, Liu D (2018) Evaluation of multiple stochastic rainfall generators in diverse climatic regions. Stoch Environ Res Risk Assess 32(5):1337–1353

    Article  Google Scholar 

  • Wheater HS, Chandler RE, Onof CJ, Isham VS, Bellone E, Yang C, Segond ML (2005) Spatial-temporal rainfall modelling for flood risk estimation. Stoch Environ Res Risk Assess 19(6):403–416

    Article  Google Scholar 

  • Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change, available from the DDC of IPCC TGCIA, 27

  • Zhang X, Garbrecht JD (2003) Evaluation of CLIGEN precipitation parameters and their implication on WEPP runoff and erosion prediction. Trans ASAE 46:311

    Google Scholar 

  • Zwiers F (1996) Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with CCC GCM2. Clim Dyn 12:825–847

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Associate Editor and the anonymous referees for their comments and thoughtful review of an early version of the article, which greatly improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Alodah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alodah, A., Seidou, O. Influence of output size of stochastic weather generators on common climate and hydrological statistical indices. Stoch Environ Res Risk Assess 34, 993–1021 (2020). https://doi.org/10.1007/s00477-020-01825-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-020-01825-w

Keywords

Navigation