Skip to main content
Log in

Break of temporal symmetry in a stationary Markovian setting: evidencing an arrow of time, and parameterizing linear dependencies using fractional low-order joint moments

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

We demonstrate that “an arrow of time” that is being determined by the joint distributions of successive process variables, or equivalently a break of temporal symmetry (i.e. a symmetry/asymmetry dichotomy), can be evidenced solely on probabilistic grounds, on the basis of structural dependencies and statistical attributes of observed quantities, without the intervention of any symmetric or asymmetric physical laws. We do so for the simplest case of stable Markovian recursions, and show that a break of temporal symmetry can occur as the combined effect of lack of Gaussianity and statistical dependencies, even in the case when the increments of the generated process are independent and identically distributed with symmetric marginal. This striking result occurs under conditions of stationarity, without any changes in the dynamic recursion equation of the process, allowing for statistical characterization of temporal symmetries versus asymmetries. To that end, we introduce and exemplify the use of an estimator based on fractional low-order joint moments, which exists for all stationary stochastic processes with strictly stable symmetric marginals, and can be used to parameterize their dependence structure in a linear setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arneodo A, Bacry E, Muzy JF (1995) The thermodynamics of fractals revisited with wavelets. Phys A 213(1–2):232–275

    Article  CAS  Google Scholar 

  • Boltzmann L (1877) Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Sitzungsber Kais Akad Wiss Wien Math Naturwiss Classe 76:373–435

    Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis, forecasting and control. Holden-Day Inc., San Francisco

    Google Scholar 

  • Cauchy A (1853) Sur les résultats moyens d’observations de même nature et sur les résultats les plus probables. CR Acad Sci Paris 37:198–206

    Google Scholar 

  • Christakos G (1990) A Bayesian/maximum-entropy view to the spatial estimation problem. Math Geol 30:435–462

    Article  Google Scholar 

  • Christakos G (2017) Spatiotemporal random fields: theory and applications, 2nd edn. Elsevier Inc., Cambridge

    Google Scholar 

  • Fama E (1968) Risk, return and equilibrium: some clarifying comments. J Finance 23:29–40

    Article  Google Scholar 

  • Ferguson TS (1962) A representation of the symmetric bivariate Cauchy distribution. Ann Math Stat 33(4):1256–1266

    Article  Google Scholar 

  • Gauss CF (1809) The heavenly bodies moving about the Sun in conic sections. Dover Publications, New York (Reprint 1963)

    Google Scholar 

  • Georgiou T, Lindquist A (2014) On time-reversibility of linear stochastic models. IFAC Proc Vol 47(3):10403–10408. https://doi.org/10.3182/20140824-6-ZA-1003.00029

    Article  Google Scholar 

  • Hristopulos DT, Christakos G (2001) Practical calculation of non-Gaussian multivariate moments in spatiotemporal Bayesian maximum entropy analysis. Math Geol 33(5):543–568

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  • Koutsoyiannis D (2017) Entropy production in stochastics. Entropy 19:581–630

    Article  Google Scholar 

  • Kyprianou AE (2014) Fluctuations of Lévy processes with applications, 2 edn. Springer

  • Lerch M (1887) Note sur la fonction \(K_{(w, x, s)}=\sum _{k=0}^{\infty }{{\rm e}^{2k\pi ix} \over (w+k)^{s}}\). Acta Math 11(1–4):19–24

    Article  Google Scholar 

  • Lévy P (1937) Théorie de l’addition des variables aléatoires. Gauthier-Villars, Paris

    Google Scholar 

  • Lovejoy S, Schertzer D (1995) Multifractals and rain. In: Kundzewicz ZW (ed) New uncertainty concepts in hydrology and hydrological modelling. Cambridge University Press, Cambridge

    Google Scholar 

  • Mandelbrot B (1963) The variation of certain speculative prices. J Bus 26:394–419

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. W.H. Freeman and Company, New York

    Book  Google Scholar 

  • Osawa H (1988) Reversibility of first-order autorregressive processes. Stoch Process Appl 28:61–69

    Article  Google Scholar 

  • Pochhammer L (1888) Ueber die Differentialgleichung der allgemeineren hypergeometrischen Reihe mit zwei endlichen singulären Punkten. J für die reine Angew Math 102:76–159

    Google Scholar 

  • Pólya G (1920) Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem. Math Z 8:12–21

    Article  Google Scholar 

  • Prigogine I, Géhéniau J (1986) Entropy, matter, and cosmology. Proc Natl Acad Sci USA 83(17):6245–6249

    Article  CAS  Google Scholar 

  • Ruiz-Medina MD, Angulo JM, Anh VV (2008) Multifractality in space-time statistical models. Stoch Environ Res Risk Assess 22:81–86

    Article  Google Scholar 

  • Samorodnitsky G, Taqqu MS (1994) Stable non-Gaussian random processes. Chapman & Hall, London

    Google Scholar 

  • Schertzer D, Lovejoy S (1985) The dimension and intermittency of atmospheric dynamics. In: Launder B (ed) Turbulent shear flow, vol 4. Springer, New York

    Google Scholar 

  • Shannon CE (1948) The mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Singh VP (2017) Entropy theory. In: Singh VP (ed) Handbook of applied hydrology, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Sonuga JO (1972) Principle of maximum entropy in hydrologic frequency analysis. J Hydrol 17:177–191

    Article  Google Scholar 

  • Veneziano D, Langousis A (2005) The maximum of multifractal cascades: exact distribution and approximations. Fractals 13(4):311–324

    Article  Google Scholar 

  • Veneziano D, Langousis A (2010) Scaling and fractals in hydrology. In: Sivakumar B, Berndtsson R (eds) Advances in data-based approaches for hydrologic modeling and forecasting. World Scientific, Hackensack

    Google Scholar 

  • Weiss G (1975) Time-reversibility of linear stochastic processes. J Appl Probab 12(4):831–836

    Article  Google Scholar 

  • Wiener N (1921) The average of an analytic functional and the Brownian motion. Proc Natl Acad Sci 7:294–298

    Article  CAS  Google Scholar 

  • Zwanzig R (1961) Memory effects in irreversible thermodynamics. Phys Rev 124(4):983–992

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to dedicate this paper to the memory of two colleagues and friends (in alphabetical order): Alain Arnéodo and Peter Rasmussen who, in different ways, shaped our understanding and modelling of non-linear processes in geophysics. The constructive comments and suggestions of two anonymous reviewers and the Associate Editor are explicitly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Langousis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carsteanu, A.A., Langousis, A. Break of temporal symmetry in a stationary Markovian setting: evidencing an arrow of time, and parameterizing linear dependencies using fractional low-order joint moments. Stoch Environ Res Risk Assess 34, 1–6 (2020). https://doi.org/10.1007/s00477-019-01749-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-019-01749-0

Keywords

Navigation