Abstract
High densities of local-scale daily precipitation series across relatively large domains are of special interest for a wide range of applications (e.g., hydrological modeling, agriculture). The focus of the present study is to post-process gridded precipitation from a single reanalysis to correct bias and scale mismatch with observations, and to extend the same post-processing at sites without historical data. A Stochastic Model Output Statistical approach combined with meta-Gaussian spatiotemporal random fields, calibrated at sites, is employed to post-process the Climate Forecast System Reanalysis (CFSR) precipitation. The post-processed data, characterized by local parameters, is then mapped across the Great Lakes region (Canada) using two different approaches: (1) kriging, and (2) Vector Generalized Additive Model (VGAM) with spatial covariates. The kriging enables the interpolation of these parameters, while the spatial VGAM helps to spatially post-process CFSR precipitation using a single model. The k-fold cross-validation procedure is employed to assess the ability of the two approaches to predict selected characteristics and climate indices. The kriging and spatial VGAM approaches modeled effectively the distribution of the precipitation process to similar extents (e.g., mean daily precipitation, variability and the number of wet days). The kriging approach produces slightly better estimates of climate indices than the spatial VGAM models. Both approaches demonstrate significant improvement of the metric estimation compared to those of CFSR without post-processing.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6(6):661–675. https://doi.org/10.1002/joc.3370060607
Allard M, Lemay M (2012) Nunavik and Nunatsiavut: from science to policy. An integrated regional impact study (IRIS) of climate change and modernization. Technical report, ArcticNet Inc
Ambrosino C, Chandler RE, Todd MC (2014) Rainfall-derived growing season characteristics for agricultural impact assessments in South Africa. Theor Appl Climatol 115(3–4):411–426. https://doi.org/10.1007/s00704-013-0896-y
Asong ZE, Khaliq MN, Wheater HS (2016a) Multisite multivariate modeling of daily precipitation and temperature in the Canadian prairie provinces using generalized linear models. Clim Dyn 1–21. https://doi.org/10.1007/s00382-016-3004-z
Asong ZE, Khaliq MN, Wheater HS (2016b) Projected changes in precipitation and temperature over the Canadian prairie provinces using the generalized linear model statistical downscaling approach. J Hydrol 539:429–446. https://doi.org/10.1016/j.jhydrol.2016.05.044
Baxevani A, Lennartsson J (2015) A spatiotemporal precipitation generator based on a censored latent Gaussian field. Water Resour Res 51(6):4338–4358. https://doi.org/10.1002/2014WR016455
Bengtsson L, Shukla J (1988) Integration of space and in situ observations to study global climate change. Bull Am Meteorol Soc 69:1130–1143. https://doi.org/10.1175/1520-0477(1988)069<1130:IOSAIS>2.0.CO;2
Bennett B, Thyer M, Leonard M, Lambert M, Bates B (2018) A comprehensive and systematic evaluation framework for a parsimonious daily rainfall field model. J Hydrol 556:1123–1138. https://doi.org/10.1016/j.jhydrol.2016.12.043
Blanchet J, Lehning M (2010) Mapping snow depth return levels: smooth spatial modeling versus station interpolation. Hydrol Earth Syst Sci 14(12):2527–2544
Bromwich DH, Nicolas JP, Monaghan AJ (2011) An assessment of precipitation changes over Antarctica and the southern ocean since 1989 in contemporary global reanalyses. J Clim 24(16):4189–4209. https://doi.org/10.1175/2011JCLI4074.1
Buishand T (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58(1–2):11–27. https://doi.org/10.1016/0022-1694(82)90066-X
Buishand TA, Shabalova MV, Brandsma T (2004) On the choice of the temporal aggregation level for statistical downscaling of precipitation. J Climate 17(9):1816–1827. https://doi.org/10.1175/1520-0442(2004)017<1816:OTCOTT>2.0.CO;2
Cannon AJ (2018) Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Clim Dyn 50(1–2):31–49. https://doi.org/10.1007/s00382-017-3580-6
Chandler R (2002) GLIMCLIM: generalized linear modelling for daily climate time series (software and user guide). Technical report, MSU-CSE-00-2, Department of Statistical Science, University College London
Chandler RE, Wheater HS (2002) Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Water Resour Res 38(10):10-1–10-11. https://doi.org/10.1029/2001WR000906,1192
Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836. https://doi.org/10.1080/01621459.1979.10481038
Coe R, Stern R (1982) Fitting models to daily rainfall data. J Appl Meteorol 21(7):1024–1031. https://doi.org/10.1175/1520-0450(1982)021<1024:FMTDRD>2.0.CO;2
Cooley D, Sain SR (2010) Spatial hierarchical modeling of precipitation extremes from a regional climate model. J Agric Biol Environ Stat 15(3):381–402. https://doi.org/10.1007/s13253-010-0023-9
Cressie N, Huang H-C (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94(448):1330–1340. https://doi.org/10.2307/2669946
Cressie NAC (1993) Statistics for spatial data. Wiley, Hoboken, pp 1–26. https://doi.org/10.1002/9781119115151.ch1
Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630. https://doi.org/10.1175/JCLI3884.1
Deutsch C, Journel A (1992) GSLIB: geostatistical software library and user’s guide, applied geostatistical series. Oxford University Press, Oxford
Devine KA, Mekis E (2008) Field accuracy of Canadian rain measurements. Atmos Ocean 46(2):213–227. https://doi.org/10.3137/ao.460202
Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. J R Stat Soc Ser C (Appl Stat) 47(3):299–350. https://doi.org/10.1111/1467-9876.00113
Donat MG, Sillmann J, Wild S, Alexander LV, Lippmann T, Zwier FW (2014) Consistency of temperature and precipitation extremes across various global gridded in situ and reanalysis datasets. J Clim 27:5019–5035. https://doi.org/10.1175/JCLI-D-13-00405.1
Eden JM, Widmann M, Maraun D, Vrac M (2014) Comparison of GCM- and RCM-simulated precipitation following stochastic postprocessing. J Geophys Res Atmos 119(19):11040–11053. https://doi.org/10.1002/2014JD021732
Environment and Climate Change Canada (2013) Adjusted precipitation and homogenized canadian climate data (AHCCD)
Eum H-I, Dibike Y, Prowse T, Bonsal B (2014) Inter-comparison of high-resolution gridded climate data sets and their implication on hydrological model simulation over the Athabasca Watershed, Canada. Hydrol Process 28(14):4250–4271. https://doi.org/10.1002/hyp.10236
Eum H-I, Cannon AJ, Murdock TQ (2017) Intercomparison of multiple statistical downscaling methods: multi-criteria model selection for South Korea. Stoch Env Res Risk Assess 31(3):683–703. https://doi.org/10.1007/s00477-016-1312-9
Evin G, Favre A-C, Hingray B (2018) Stochastic generation of multi-site daily precipitation focusing on extreme events. Hydrol Earth Syst Sci 22(1):655–672. https://doi.org/10.5194/hess-22-655-2018
Fessler JA (1991) Nonparametric fixed-interval smoothing with vector splines. IEEE Trans Signal Process 39(4):852–859
Goovaerts P (1997) Geostatistics for natural resources evaluation, applied geostatistics series. Oxford University Press, Oxford
Gräler B, Pebesma E, Heuvelink G (2016) Spatio-temporal interpolation using gstat. The R Journal 8:204–218
Haberlandt U, Hundecha Y, Pahlow M, Schumann AH (2011) Rainfall generators for application in flood studies. In: Schumann AH (ed), Flood risk assess. Manag. How to specify hydrol. Loads, their consequences uncertainties, Springer, Netherlands, pp 117–147. https://doi.org/10.1007/978-90-481-9917-4
Habib E, Krajewski WF, Ciach GJ (2001) Estimation of rainfall interstation correlation. J Hydrometeorol 2(6):621–629. https://doi.org/10.1175/1525-7541(2001)002<0621:EORIC>2.0.CO;2
Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall/CRC, London, p 352
Hopkinson RF, Mckenney DW, Milewska EJ, Hutchinson MF, Papadopol P, Vincent LA (2011) Impact of aligning climatological day on gridding daily maximum-minimum temperature and precipitation over Canada. J Appl Meteorol Climatol 50(8):1654–1665. https://doi.org/10.1175/2011JAMC2684.1
Katz RW (1977) Precipitation as a chain-dependent process. J Appl Meteorol 16(7):671–676
Kendall MG (1962) Rank correlation methods, 3rd edn. Charles Griffin & Co. Ltd, London , previous ed. (B55-8618) 1955
Khedhaouiria D, Mailhot A, Favre A-C (2018a) Stochastic post-processing of CFSR Daily precipitation across Canada. Atmos Ocean 56(2):104–106. https://doi.org/10.1080/07055900.2018.1434122
Khedhaouiria D, Mailhot A, Favre A-C (2018b) Daily precipitation fields modeling across the great lakes region (Canada) by Using the CFSR reanalysis. J Appl Meteorol Climatol 57(10):2419–2438. https://doi.org/10.1175/JAMC-D-18-0019.1
Kidd C, Becker A, Huffman GJ, Muller CL, Joe P, Skofronick-Jackson G, Kirschbaum DB, Kidd C, Becker A, Huffman GJ, Muller CL, Joe P, Skofronick-Jackson G, Kirschbaum DB (2017) So, how much of the earth’s surface is covered by rain gauges? Bull Am Meteorol Soc 98(1):69–78. https://doi.org/10.1175/BAMS-D-14-00283.1
Kleiber W, Katz RW, Rajagopalan B (2012) Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resour Res 48(1):523. https://doi.org/10.1029/2011WR011105
Lamb R, Faulkner D, Wass P, Cameron D (2016) Have applications of continuous rainfall-runoff simulation realized the vision for process-based flood frequency analysis? Hydrol Process 30(14):2463–2481. https://doi.org/10.1002/hyp.10882
Lin A, Wang XL (2011) An algorithm for blending multiple satellite precipitation estimates with in situ precipitation measurements in Canada. J Geophys Res Atmos 116(D21). https://doi.org/10.1029/2011JD016359,d21111
Lucas-Picher P, Laprise R, Winger K (2017) Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions. Clim Dyn 48(7–8):2611–2633. https://doi.org/10.1007/s00382-016-3227-z
Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3). https://doi.org/10.1029/2009RG000314
McCullag P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, New York, p 532
Mekis E (2005) Adjustments for trace measurements in Canada. In: 15th Conference on applied climatology, Savannah, Georgia, USA
Mekis E, Vincent LA (2011) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos Ocean 49(2):163–177. https://doi.org/10.1080/07055900.2011.583910
Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87(3):343–360
Naveau P, Huser R, Ribereau P, Hannart A (2016) Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. Water Resour Res 52(4):2753–2769. https://doi.org/10.1002/env.1044
Newlands N, Davidson A, Howard A, Hill H (2011) Validation and inter-comparison of three methodologies for interpolating daily precipitation and temperature across Canada. Environmetrics 22(2):205–223. https://doi.org/10.1002/env.1044
Olson B, Kleiber W (2017) Approximate bayesian computation methods for daily spatiotemporal precipitation occurrence simulation. Water Resour Res 53(4):3352–3372. https://doi.org/10.1002/2016WR019741
Panthou G, Vischel T, Lebel T, Blanchet J, Quantin G, Ali A (2012) Extreme rainfall in West Africa: a regional modeling. Water Resour Res 48(8):1–19. https://doi.org/10.1029/2012WR012052
Pettitt A (1979) A non-parametric approach to the change-point problem. J Appl Stat 28(2):126–135
Plummer DA, Caya D, Frigon A, Côté H, Giguère M, Paquin D, Biner S, Harvey R, de Elìa R (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19(13):3112–3132. https://doi.org/10.1175/JCLI3769.1
Podgórski K, Wegener J (2012) Velocities of a spatial-temporal stochastic field with embedded dynamics. Environmetrics 23(3):238–252. https://doi.org/10.1002/env.2135
Rusticucci M, Zazulie N, Raga GB (2014) Regional winter climate of the southern central Andes: Assessing the performance of ERA-Interim for climate studies. J Geophys Res Atmos 119(14):8568–8582. https://doi.org/10.1002/2013JD021167
Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Hou Y-T, Chuang H-Y, Juang H-MH, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Van Den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J-K, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C-Z, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057. https://doi.org/10.1175/2010BAMS3001.1
Schlather M, Malinowski A, Oesting M, Boecker D, Strokorb K, Engelke S, Martini J, Ballani F, Moreva O, Auel J, Menck PJ, Gross S, Ober U, Christoph Berreth K, Burmeister J, Manitz P, Ribeiro R, Singleton B Pfaff, Core Team R (2017) RandomFields: simulation and analysis of random fields. R Package Version 3(1):50
Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26(5):679–689. https://doi.org/10.1002/joc.1287
Serinaldi F, Kilsby CG (2014) Simulating daily rainfall fields over large areas for collective risk estimation. J Hydrol 512:285–302. https://doi.org/10.1016/j.jhydrol.2014.02.043
Stein M (1999) Interpolation of spatial data: some theory for kriging, vol 249. Springer, New-York
Stern RD, Coe R (1984) A model fitting analysis of daily rainfall data. J R Stat Soc Ser A (Gen) 147(1):1–34. https://doi.org/10.2307/2981736
Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19(6):916–934. https://doi.org/10.1175/JCLI3672.1
Takeuchi K (1976) Distribution of informational statistics and a criterion of model fitting. Suri-Kagaku (Math Sci) 153:12–18
Tapiador F, Navarro A, Levizzani V, García-Ortega E, Huffman G, Kidd C, Kucera P, Kummerow C, Masunaga H, Petersen W, Roca R, Sánchez J-L, Tao W-K, Turk F (2017) Global precipitation measurements for validating climate models. Atmos Res 197:1–20. https://doi.org/10.1016/J.ATMOSRES.2017.06.021
Tustison B, Harris D, Foufoula-Georgiou E (2001) Scale issues in verification of precipitation forecasts. J Geophys Res 106(D11):11775–11784. https://doi.org/10.1029/2001JD900066
Van de Vyver H (2012) Spatial regression models for extreme precipitation in Belgium. Water Resour Res 48(9). https://doi.org/10.1029/2011WR011707
Volosciuk C, Maraun D, Vrac M, Widmann M (2017) A combined statistical bias correction and stochastic downscaling method for precipitation. Hydrol Earth Syst Sci 21(3):1693–1719. https://doi.org/10.5194/hess-21-1693-2017
von Neumann J (1941) Distribution of the ratio of the mean square successive difference to the variance. Ann Math Stat 12(4):367–395. https://doi.org/10.1214/aoms/1177731677
Vrac M, Naveau P (2007) Stochastic downscaling of precipitation: from dry events to heavy rainfalls. Water Resour Res 43(7):W07402. https://doi.org/10.1029/2006WR005308
Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23(6):679–692. https://doi.org/10.1002/joc.906
Wong G, Maraun D, Vrac M, Widmann M, Eden JM, Kent T (2014) Stochastic model output statistics for bias correcting and downscaling precipitation including extremes. J Clim 27(18):6940–6959. https://doi.org/10.1175/JCLI-D-13-00604.1
Yee TW (2016) VGAM: vector generalized linear and additive models, R package version 1.0-3
Yee TW, Wild CJ (1996) Vector generalized additive models. J R Stat Soc Ser B (Methodol) 58(3):481–493. https://doi.org/10.2307/2345888
Zamani S, Gobin A, Van de Vyver H, Gerlo J (2016) Atmospheric drought in Belgium—statistical analysis of precipitation deficit. Int J Climatol 36(8):3056–3071. https://doi.org/10.1002/joc.4536
Acknowledgements
The authors would like to thank Eva Mekis from Environment Canada who provided the daily series from the Adjusted Precipitation for Canada (APC2) dataset, the Ministère du Développement Durable, de l’Environnement et de la Lutte contre les Changements Climatiques (MDDELCC) of Québec (data available upon request at Info-Climat@mddelcc.gouv.qc.ca for the daily records. CFSR hourly precipitation datasets are freely available at https://rda.ucar.edu/datasets/ds093.1/. This research was partly funded by a Collaborative Research and Development Grant funding from Natural Sciences and Engineering Research Council of Canada (NSERC).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
RMSE and relative bias estimates
RMSE and relative bias estimates
Let \(\mathbf {m}_{s} = \{ m_{1,s}, m_{2,s}, \ldots , m_{100,s}\}\), \(m_{s}^{(obs)}\), and \(m_{s}^{(cfsr)}\) be, respectively, the vector of climate characteristics (e.g., mean) or ETCCDI indices (e.g., mean of the annual CDW), estimated across the 100 post-processed daily precipitation series at the site s, the observed and the CFSR estimates of the same quantity. The RMSE between the observed and post-treated series presented in this study corresponds to:
where S is the total number of sites across the domain, and \(m_{n,i}\) the characteristic or index for the simulations n (from 1 to N) at the site i. The pst subscript refers to the post-processed values. Similarly, the relative bias expresses as:
The lower and upper limits of the 95% confidence interval for \({\text {RMSE}}(obs, pst)\) was estimated as, respectively, the \(2.5{\mathrm{th}}\) and \(97.5{\mathrm{th}}\) quantile obtained from the \(\{ {\text {RMSE}}(obs, pst)^{(n)} \} _{n \in [1,N]}\) distribution. The same approach was used to provide the 95% confidence interval for \({\text {Rbias}}(obs, pst)\).
Finally, the RMSE and Rbias between observed and CFSR estimates were classically assessed with the followings:
Rights and permissions
About this article
Cite this article
Khedhaouiria, D., Mailhot, A. & Favre, AC. Regional modeling of daily precipitation fields across the Great Lakes region (Canada) using the CFSR reanalysis. Stoch Environ Res Risk Assess 34, 1385–1405 (2020). https://doi.org/10.1007/s00477-019-01722-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00477-019-01722-x


