Abstract
This work adopts a Banach-valued time series framework for component-wise estimation and prediction, from temporal correlated functional data, in presence of exogenous variables. The strong-consistency of the proposed functional estimator and associated plug-in predictor is formulated. The simulation study undertaken illustrates their large-sample size properties. Air pollutants PM10 curve forecasting, in the Haute-Normandie region (France), is addressed by implementation of the functional time series approach presented.
Similar content being viewed by others
References
Álvarez-Liébana J, Bosq D, Ruiz-Medina MD (2016) Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck in Hilbert and Banach spaces. Stat Probab Lett 117:12–22
Álvarez-Liébana J, Bosq D, Ruiz-Medina MD (2017) Asymptotic properties of a componentwise ARH(1) plug-in predictor. J Multivar Anal 155:12–34
Aneiros-Pérez G, Vieu P (2008) Nonparametric time series prediction: a semi-functional partial linear modeling. J Multivar Anal 99:834–857
Angelini C, De Candittis D, Leblanc F (2003) Wavelet regression estimation in nonparametric mixed effect models. J Multivar Anal 85:267–291
Antoniadis A, Sapatinas T (2003) Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes. J Multivar Anal 87:133–158
Besse PC, Cardot H, Stephenson DB (2000) Autoregressive forecasting of some functional climatic variations. Scand J Stat 27:673–687
Blanke D, Bosq D (2016) Detecting and estimating intensity of jumps for discretely observed ARMAD(1,1) processes. J Multivar Anal 146:119–137
Bohorquez M, Giraldo R, Mateu J (2017) Multivariate functional random fields: prediction and optimal sampling. Stoch Environ Res Risk Assess 31:53–70
Bosq D (2000) Linear processes in function spaces. Springer, New York
Bueno-Larraz B, Klepsch J (2018) Variable selection for the prediction of \(C[0,1]\)-valued AR processes using RKHS. arXiv:1710.06660
Damon J, Guillas S (2002) The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics 13:759–774
Damon J, Guillas S (2005) Estimation and simulation of autoregressie Hilbertian processes with exogenous variables. Stat Inference Stoch Process 8:185–204
Daubechies I (1992) Ten lectures on wavelets, vol 61. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia
Dehling H, Sharipov OS (2005) Estimation of mean and covariance operator for Banach space valued autoregressive processes with dependent innovations. Stat Inference Stoch Process 8:137–149
Delicado P, Giraldo R, Comas C, Mateu J (2010) Statistics for spatial functional data: some recent contributions. Environmetrics 21:224–239
El Hajj L (2011) Limit theorems for \({\cal{D}}([0,1])\)-valued autoregressive processes. C R Acad Sci Paris Sér I Math 349:821–825
Febrero-Bande M, Galeano P, González-Manteiga W (2008) Outlier detection in functional data by depth measures with application to identify abnormal NO\(_x\) levels. Environmetrics 19:331–345
Fernández de Castro BM, González-Manteiga W, Guillas S (2005) Functional samples and bootstrap for predicting sulfur dioxide levels. Technometrics 47:212–222
Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York
Geenens G (2011) Curse of dimensionality and related issues in nonparametric functional regression. Stat Surv 5:30–43
Giraldo R, Delicado P, Mateu J (2010) Geostatistics for functional data: an ordinary kriging approach. Environ Ecol Stat 18:411–426
Gocheva-Ilieva S, Ivanov A, Voynikova D, Boyadzhiev D (2014) Time series analysis and forecasting for air pollution in small urban area: an SARIMA and factor analysis approach. Stoch Environ Res Risk Assess 28:1045–1060
Goia A, Vieu P (2015) A partitioned single functional index model. Comput Stat 30:673–692
Goia A, Vieu P (2016) An introduction to recent advances in high/infinite dimensional statistics. J Multivar Anal 146:1–6
Grivas G, Chaloulakou A (2006) Artificial neural network models for prediction of PM10 hourly concentrations in the greater area of Athens, Greece. Atmos Environ 40:1216–1229
Guillas S (2002) Doubly stochastic Hilbertian processes. J Appl Probab 39:566–580
He H-D, Lu W-Z, Xue Y (2015) Prediction of particulate matters at urban intersection by using multilayer perceptron model based on principal components. Stoch Environ Res Risk Assess 29:2107–2114
Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York
Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley, New York
Ignaccolo R, Mateu J, Giraldo R (2014) Kriging with external drift for functional data for air quality monitoring. Stoch Environ Res Risk Assess 28:1171–1186
Kuelbs J (1970) Gaussian measures on a Banach space. J Funct Anal 5:354–367
Labbas A, Mourid T (2002) Estimation et prévision d’un processus autorégressif Banach. C R Acad Sci Paris Sér I 335:767–772
Marion JM, Pumo B (2004) Comparaison des modéles ARH(1) et ARHD(1) sur des données physiologiques. Ann ISUP 48:29–38
Mas A (2004) Consistance du prédicteur dans le modèle ARH\((1)\): le cas compact. Ann ISUP 48:39–48
Mas A (2007) Weak-convergence in the functional autoregressive model. J Multivar Anal 98:1231–1261
Moritz S, Bartz-Beielstein T (2017) imputeTS: time series missing value imputation in R. R J 9:207–218
Nerini D, Monestiez P, Mantea C (2010) Cokriging for spatial functional data. J Multivar Anal 101:409–418
Pang W, Christakos G, Wang J-F (2009) Comparative spatiotemporal analysis of fine particulate matter pollution. Environmetrics 21:305–317
Parvardeh A, Jouzdani NM, Mahmoodi S, Soltani AR (2017) First order autoregressive periodically correlated model in Banach spaces: existence and central limit theorem. J Math Anal Appl 449:756–768
Paschalidou AK, Karakitsios S, Kleanthous S, Kassomenos PA (2011) Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environ Sci Pollut Res 18:316–327
Ruiz-Medina MD (2011) Spatial autorregresive and moving average Hilbertian processes. J Multivar Anal 102:292–305
Ruiz-Medina MD, Álvarez-Liébana J (2019) A note on strong-consistency of componentwise ARH(1) predictors. Stat Probab Lett 145:224–248
Ruiz-Medina MD, Álvarez-Liébana J (2019) Strongly consistent autoregressive predictors in abstract Banach spaces. J Multivar Anal. https://doi.org/10.1016/j.jmva.2018.08.001
Ruiz-Medina MD, Espejo RM (2012) Spatial autoregressive functional plug-in prediction of ocean surface temperature. Stoch Environ Res Risk Assess 26:335–344
Ruiz-Medina MD, Espejo RM, Ugarte MD, Militino AF (2014) Functional time series analysis of spatio-temporal epidemiological data. Stoch Environ Res Risk Assess 28:943–954
Slini T, Kaprara A, Karatzas K, Mousiopoulos N (2006) PM10 forecasting for Thessaloniki, Greece. Environ Model Softw 21:559–565
Stadlober E, Hormann S, Pfeiler B (2008) Quality and performance of a PM10 daily forecasting model. Atmos Environ 42:1098–1109
Triebel T (1983) Theory of function spaces II. Birkhauser, Basel
Vieu P (2018) On dimension reduction models for functional data. Stat Prob Lett 136:134–138
Zhang L, Liu Y, Zhao F (2018) Singular value decomposition analysis of spatial relationships between monthly weather and air pollution index in China. Stoch Environ Res Risk Assess 32:733–748
Zolghadri A, Cazaurang F (2006) Adaptive nonlinear state-space modelling for the prediction of daily mean PM10 concentrations. Environ Model Softw 21:885–894
Acknowledgements
This work was supported in part by projects MTM2015–71839–P and PGC2018-099549-B-I00 (co-funded by Feder funds), of the DGI, MINECO, Spain.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
It is well-known that Besov spaces, \(\left\{ \left( {\mathcal{B}}_{p,q}^{r}, \left\| \cdot \right\| _{p,q}^{r} \right) , \ r \in {\mathbb{R}},~1 \le p,q \le \infty \right\} \), and their norms can be characterized in terms of the wavelet transform (see, e.g., Triebel 1983). Specifically, for every \(f\in {\mathcal{B}}_{p,q}^{r}\),
where \(\varphi \) and \(\psi \) denote the father and mother wavelets, whose translations and dilations provide a multiresolution analysis of a suitable space of square-integrable functions. Particularly, consider the space \(L^{2}([0,1])\), and its orthogonal decomposition from an \(\left( \lceil r \rceil + 1 \right) \)-regular Multiresolution Analysis, induced by an orthogonal basis of wavelets, for certain \(r>0\). Then, father and mother wavelets belong to \({\mathcal{C}}^{\left( \lceil r \rceil + 1 \right) } ([0,1])\). For every \(f\in L^{2}([0,1])\),
where J is such that \(2^J \ge 2^{\left( \lceil r \rceil + 1 \right) }\), and for \(k=0,\ldots , 2^{j-1}, j=J,\ldots ,K\),
(see Daubechies 1992). Here, K is the truncation parameter defining the last (or highest) resolution level considered in the finite-dimensional wavelet approximation (32).
As commented before, the following function spaces have been considered:
where the parameters \(\{\gamma _{i}\}_{i=1,\ldots ,b+1}\) reflect the second-order local regularity of the functional random components of \({\overline{X}}=\{{\overline{X}}_{n},\ n\in {\mathbb{Z}}\}\) in Eq. (5). From embedding theorems between Besov spaces, the following continuous inclusions hold (see Triebel 1983):
for \(\gamma _{i}>2\beta >1, i=1,\ldots ,b+1\). Thus, Assumptions A4–A5 are satisfied. The \({\overline{B}}\) and \({\overline{B}}^{\star }\) norms are then computed from the following identities: For every \({\overline{f}} = \left( f; f_{1},\ldots ,f_{b} \right) ,\ {\overline{g}} = \left( g; g_{1},\ldots , g_{b} \right) \in {\overline{B}}\subset \widetilde{{\overline{H}}}\),
where for \(f\in B\), and \(g\in B^{\star }\),
Rights and permissions
About this article
Cite this article
Álvarez-Liébana, J., Ruiz-Medina, M.D. Prediction of air pollutants PM10 by ARBX(1) processes. Stoch Environ Res Risk Assess 33, 1721–1736 (2019). https://doi.org/10.1007/s00477-019-01712-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00477-019-01712-z