Skip to main content
Log in

Prediction of air pollutants PM10 by ARBX(1) processes

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This work adopts a Banach-valued time series framework for component-wise estimation and prediction, from temporal correlated functional data, in presence of exogenous variables. The strong-consistency of the proposed functional estimator and associated plug-in predictor is formulated. The simulation study undertaken illustrates their large-sample size properties. Air pollutants PM10 curve forecasting, in the Haute-Normandie region (France), is addressed by implementation of the functional time series approach presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Álvarez-Liébana J, Bosq D, Ruiz-Medina MD (2016) Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck in Hilbert and Banach spaces. Stat Probab Lett 117:12–22

    Google Scholar 

  • Álvarez-Liébana J, Bosq D, Ruiz-Medina MD (2017) Asymptotic properties of a componentwise ARH(1) plug-in predictor. J Multivar Anal 155:12–34

    Google Scholar 

  • Aneiros-Pérez G, Vieu P (2008) Nonparametric time series prediction: a semi-functional partial linear modeling. J Multivar Anal 99:834–857

    Google Scholar 

  • Angelini C, De Candittis D, Leblanc F (2003) Wavelet regression estimation in nonparametric mixed effect models. J Multivar Anal 85:267–291

    Google Scholar 

  • Antoniadis A, Sapatinas T (2003) Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes. J Multivar Anal 87:133–158

    Google Scholar 

  • Besse PC, Cardot H, Stephenson DB (2000) Autoregressive forecasting of some functional climatic variations. Scand J Stat 27:673–687

    Google Scholar 

  • Blanke D, Bosq D (2016) Detecting and estimating intensity of jumps for discretely observed ARMAD(1,1) processes. J Multivar Anal 146:119–137

    Google Scholar 

  • Bohorquez M, Giraldo R, Mateu J (2017) Multivariate functional random fields: prediction and optimal sampling. Stoch Environ Res Risk Assess 31:53–70

    Google Scholar 

  • Bosq D (2000) Linear processes in function spaces. Springer, New York

    Google Scholar 

  • Bueno-Larraz B, Klepsch J (2018) Variable selection for the prediction of \(C[0,1]\)-valued AR processes using RKHS. arXiv:1710.06660

  • Damon J, Guillas S (2002) The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics 13:759–774

    CAS  Google Scholar 

  • Damon J, Guillas S (2005) Estimation and simulation of autoregressie Hilbertian processes with exogenous variables. Stat Inference Stoch Process 8:185–204

    Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets, vol 61. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia

    Google Scholar 

  • Dehling H, Sharipov OS (2005) Estimation of mean and covariance operator for Banach space valued autoregressive processes with dependent innovations. Stat Inference Stoch Process 8:137–149

    Google Scholar 

  • Delicado P, Giraldo R, Comas C, Mateu J (2010) Statistics for spatial functional data: some recent contributions. Environmetrics 21:224–239

    Google Scholar 

  • El Hajj L (2011) Limit theorems for \({\cal{D}}([0,1])\)-valued autoregressive processes. C R Acad Sci Paris Sér I Math 349:821–825

    Google Scholar 

  • Febrero-Bande M, Galeano P, González-Manteiga W (2008) Outlier detection in functional data by depth measures with application to identify abnormal NO\(_x\) levels. Environmetrics 19:331–345

    Google Scholar 

  • Fernández de Castro BM, González-Manteiga W, Guillas S (2005) Functional samples and bootstrap for predicting sulfur dioxide levels. Technometrics 47:212–222

    Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    Google Scholar 

  • Geenens G (2011) Curse of dimensionality and related issues in nonparametric functional regression. Stat Surv 5:30–43

    Google Scholar 

  • Giraldo R, Delicado P, Mateu J (2010) Geostatistics for functional data: an ordinary kriging approach. Environ Ecol Stat 18:411–426

    Google Scholar 

  • Gocheva-Ilieva S, Ivanov A, Voynikova D, Boyadzhiev D (2014) Time series analysis and forecasting for air pollution in small urban area: an SARIMA and factor analysis approach. Stoch Environ Res Risk Assess 28:1045–1060

    Google Scholar 

  • Goia A, Vieu P (2015) A partitioned single functional index model. Comput Stat 30:673–692

    Google Scholar 

  • Goia A, Vieu P (2016) An introduction to recent advances in high/infinite dimensional statistics. J Multivar Anal 146:1–6

    Google Scholar 

  • Grivas G, Chaloulakou A (2006) Artificial neural network models for prediction of PM10 hourly concentrations in the greater area of Athens, Greece. Atmos Environ 40:1216–1229

    CAS  Google Scholar 

  • Guillas S (2002) Doubly stochastic Hilbertian processes. J Appl Probab 39:566–580

    Google Scholar 

  • He H-D, Lu W-Z, Xue Y (2015) Prediction of particulate matters at urban intersection by using multilayer perceptron model based on principal components. Stoch Environ Res Risk Assess 29:2107–2114

    Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Google Scholar 

  • Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley, New York

    Google Scholar 

  • Ignaccolo R, Mateu J, Giraldo R (2014) Kriging with external drift for functional data for air quality monitoring. Stoch Environ Res Risk Assess 28:1171–1186

    Google Scholar 

  • Kuelbs J (1970) Gaussian measures on a Banach space. J Funct Anal 5:354–367

    Google Scholar 

  • Labbas A, Mourid T (2002) Estimation et prévision d’un processus autorégressif Banach. C R Acad Sci Paris Sér I 335:767–772

    Google Scholar 

  • Marion JM, Pumo B (2004) Comparaison des modéles ARH(1) et ARHD(1) sur des données physiologiques. Ann ISUP 48:29–38

    Google Scholar 

  • Mas A (2004) Consistance du prédicteur dans le modèle ARH\((1)\): le cas compact. Ann ISUP 48:39–48

    Google Scholar 

  • Mas A (2007) Weak-convergence in the functional autoregressive model. J Multivar Anal 98:1231–1261

    Google Scholar 

  • Moritz S, Bartz-Beielstein T (2017) imputeTS: time series missing value imputation in R. R J 9:207–218

    Google Scholar 

  • Nerini D, Monestiez P, Mantea C (2010) Cokriging for spatial functional data. J Multivar Anal 101:409–418

    Google Scholar 

  • Pang W, Christakos G, Wang J-F (2009) Comparative spatiotemporal analysis of fine particulate matter pollution. Environmetrics 21:305–317

    Google Scholar 

  • Parvardeh A, Jouzdani NM, Mahmoodi S, Soltani AR (2017) First order autoregressive periodically correlated model in Banach spaces: existence and central limit theorem. J Math Anal Appl 449:756–768

    Google Scholar 

  • Paschalidou AK, Karakitsios S, Kleanthous S, Kassomenos PA (2011) Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environ Sci Pollut Res 18:316–327

    CAS  Google Scholar 

  • Ruiz-Medina MD (2011) Spatial autorregresive and moving average Hilbertian processes. J Multivar Anal 102:292–305

    Google Scholar 

  • Ruiz-Medina MD, Álvarez-Liébana J (2019) A note on strong-consistency of componentwise ARH(1) predictors. Stat Probab Lett 145:224–248

    Google Scholar 

  • Ruiz-Medina MD, Álvarez-Liébana J (2019) Strongly consistent autoregressive predictors in abstract Banach spaces. J Multivar Anal. https://doi.org/10.1016/j.jmva.2018.08.001

    Article  Google Scholar 

  • Ruiz-Medina MD, Espejo RM (2012) Spatial autoregressive functional plug-in prediction of ocean surface temperature. Stoch Environ Res Risk Assess 26:335–344

    Google Scholar 

  • Ruiz-Medina MD, Espejo RM, Ugarte MD, Militino AF (2014) Functional time series analysis of spatio-temporal epidemiological data. Stoch Environ Res Risk Assess 28:943–954

    Google Scholar 

  • Slini T, Kaprara A, Karatzas K, Mousiopoulos N (2006) PM10 forecasting for Thessaloniki, Greece. Environ Model Softw 21:559–565

    Google Scholar 

  • Stadlober E, Hormann S, Pfeiler B (2008) Quality and performance of a PM10 daily forecasting model. Atmos Environ 42:1098–1109

    CAS  Google Scholar 

  • Triebel T (1983) Theory of function spaces II. Birkhauser, Basel

    Google Scholar 

  • Vieu P (2018) On dimension reduction models for functional data. Stat Prob Lett 136:134–138

    Google Scholar 

  • Zhang L, Liu Y, Zhao F (2018) Singular value decomposition analysis of spatial relationships between monthly weather and air pollution index in China. Stoch Environ Res Risk Assess 32:733–748

    Google Scholar 

  • Zolghadri A, Cazaurang F (2006) Adaptive nonlinear state-space modelling for the prediction of daily mean PM10 concentrations. Environ Model Softw 21:885–894

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by projects MTM2015–71839–P and PGC2018-099549-B-I00 (co-funded by Feder funds), of the DGI, MINECO, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Ruiz-Medina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

It is well-known that Besov spaces, \(\left\{ \left( {\mathcal{B}}_{p,q}^{r}, \left\| \cdot \right\| _{p,q}^{r} \right) , \ r \in {\mathbb{R}},~1 \le p,q \le \infty \right\} \), and their norms can be characterized in terms of the wavelet transform (see, e.g., Triebel 1983). Specifically, for every \(f\in {\mathcal{B}}_{p,q}^{r}\),

$$\begin{aligned} \left\| f \right\| _{p,q}^{r} \equiv \left\| \varphi _{J} *f \right\| _p + \left[ \sum _{j=J}^{\infty } \left( 2^{j r} \left\| \psi _j*f \right\| _p \right) ^{q} \right] ^{1/q} < \infty , \end{aligned}$$
(31)

where \(\varphi \) and \(\psi \) denote the father and mother wavelets, whose translations and dilations provide a multiresolution analysis of a suitable space of square-integrable functions. Particularly, consider the space \(L^{2}([0,1])\), and its orthogonal decomposition from an \(\left( \lceil r \rceil + 1 \right) \)-regular Multiresolution Analysis, induced by an orthogonal basis of wavelets, for certain \(r>0\). Then, father and mother wavelets belong to \({\mathcal{C}}^{\left( \lceil r \rceil + 1 \right) } ([0,1])\). For every \(f\in L^{2}([0,1])\),

$$\begin{aligned} f(t) = \sum _{k = 0}^{ 2^J - 1} \alpha _{J,k}^{f} \varphi _{J,k} (t) + \sum _{j=J}^{K} \sum _{k=0}^{2^j - 1} \beta _{j,k}^{f} \psi _{j,k} (t), \quad t \in [0,1], \end{aligned}$$
(32)

where J is such that \(2^J \ge 2^{\left( \lceil r \rceil + 1 \right) }\), and for \(k=0,\ldots , 2^{j-1}, j=J,\ldots ,K\),

$$\begin{aligned} \alpha _{J,k}^{f}& = \int _{{\mathbb{R}}} f(x) \overline{\varphi _{J,k} (x)}dx, \quad \beta _{j,k}^{f} = \int _{{\mathbb{R}}} f(x) \overline{\psi _{j,k} (x)}dx \end{aligned}$$

(see Daubechies 1992). Here, K is the truncation parameter defining the last (or highest) resolution level considered in the finite-dimensional wavelet approximation (32).

As commented before, the following function spaces have been considered:

$$\begin{aligned} {\overline{B}}& = \left[ {\mathcal{B}}_{\infty ,\infty }^{0} ([0,1]) \right] ^{b+1}; \\ \widetilde{{\overline{H}}}& = \left[ H_{2}^{-\beta } ([0,1]) \right] ^{b+1}=\left[ {\mathcal{B}}_{2,2}^{-\beta }([0,1])\right] ^{b+1} \\ {\overline{H}}& = \left[ L^2 ([0,1])\right] ^{b+1}; \\ {\mathcal{H}}({\overline{X}})& = \prod _{i=1}^{b+1}H^{\gamma _{i}}_{2}([0,1])=\prod _{i=1}^{b+1}{\mathcal{B}}_{2,2}^{\gamma _{i} }([0,1]) \\ {\overline{B}}^{\star }& = \left[ {\mathcal{B}}_{1,1}^{0} ([0,1]) \right] ^{b+1}; \\ \widetilde{{\overline{H}}}^{\star }& = \left[ H_{2}^{\beta } ([0,1]) \right] ^{b+1}=\left[ {\mathcal{B}}_{2,2}^{\beta }([0,1])\right] ^{b+1} \\ {\overline{H}}^{\star }& = \left[ L^2 ([0,1])\right] ^{b+1}; \\ {[}{\mathcal{H}}({\overline{X}})]^{\star }& = \prod _{i=1}^{b+1}H^{-\gamma _{i}}_{2}([0,1])=\prod _{i=1}^{b+1}{\mathcal{B}}_{2,2}^{-\gamma _{i} }([0,1]), \end{aligned}$$
(33)

where the parameters \(\{\gamma _{i}\}_{i=1,\ldots ,b+1}\) reflect the second-order local regularity of the functional random components of \({\overline{X}}=\{{\overline{X}}_{n},\ n\in {\mathbb{Z}}\}\) in Eq. (5). From embedding theorems between Besov spaces, the following continuous inclusions hold (see Triebel 1983):

$$\begin{aligned} {\mathcal{H}}({\overline{X}})\hookrightarrow \widetilde{{\overline{H}}}^{*} \hookrightarrow {\overline{B}}^{*} \hookrightarrow {\overline{H}} \hookrightarrow {\overline{B}} \hookrightarrow \widetilde{{\overline{H}}}\hookrightarrow [{\mathcal{H}}({\overline{X}})]^{\star }, \end{aligned}$$
(34)

for \(\gamma _{i}>2\beta >1, i=1,\ldots ,b+1\). Thus, Assumptions A4–A5 are satisfied. The \({\overline{B}}\) and \({\overline{B}}^{\star }\) norms are then computed from the following identities: For every \({\overline{f}} = \left( f; f_{1},\ldots ,f_{b} \right) ,\ {\overline{g}} = \left( g; g_{1},\ldots , g_{b} \right) \in {\overline{B}}\subset \widetilde{{\overline{H}}}\),

$$\begin{aligned} \left\| {\overline{f}} \right\| _{{\overline{B}}}& = \sup _{j\ge J}\sup _{k =0,\ldots , 2^{j}-1} \sup \left( \left| \alpha _{J,k}^{f}\right| ,\left| \beta _{j,k}^{f}\right| , \sup _{i =1,\ldots , b}\left| \alpha _{J,k}^{f_{i}}\right| , \right. \\&\quad \left. \sup _{i =1,\ldots , b}\left| \beta _{j,k}^{f_{i}}\right| \right) \\ \left\| {\overline{g}} \right\| _{{\overline{B}}^{*}}& = \left[ \sum _{k=0}^{2^J-1} \left| \alpha _{J,k}^{g}\right| + \sum _{j=J}^{K} \sum _{k=0}^{2^j - 1} \left| \beta _{j,k}^{g}\right| \right] \\&\quad + \left[ \sum _{k=0}^{2^J-1} \sum _{i=1}^{b} \left| \alpha _{J,k}^{g_{i}}\right| + \sum _{j=J}^{K} \sum _{k=0}^{2^j - 1}\sum _{i=1}^{b} \left| \beta _{j,k}^{g_{i}}\right| \right] , \end{aligned}$$
(35)

where for \(f\in B\), and \(g\in B^{\star }\),

$$\begin{aligned} \left\| f \right\| _{B}& = \sup \left\{ \left| \alpha _{J,k}^{f}\right| ,~k =0,\ldots ,2^{J}-1; ~\left| \beta _{j,k}^{f}\right| ,\right. \\&\left. k=0,\ldots ,2^{j}-1,~j=J,\ldots ,K \right\} , \\ \left\| g \right\| _{B^{*}}& = \sum _{k =0}^{2^{J}-1} \left| \alpha _{J,k}^{g}\right| + \sum _{j=J}^{K} \sum _{k =0}^{2^{j}-1} \left| \beta _{j,k}^{g}\right| . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Liébana, J., Ruiz-Medina, M.D. Prediction of air pollutants PM10 by ARBX(1) processes. Stoch Environ Res Risk Assess 33, 1721–1736 (2019). https://doi.org/10.1007/s00477-019-01712-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-019-01712-z

Keywords

Navigation