Skip to main content
Log in

Quantile-based spatiotemporal risk assessment of exceedances

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Structural characteristics of random field excursion sets defined by threshold exceedances provide meaningful indicators for the description of extremal behaviour in the spatiotemporal dynamics of environmental systems, and for risk assessment. In this paper a conditional approach for analysis at global and regional scales is introduced, performed by implementation of risk measures under proper model-based integration of available knowledge. Specifically, quantile-based measures, such as Value-at-Risk and Average Value-at-Risk, are applied based on the empirical distributions derived from conditional simulation for different threshold exceedance indicators, allowing the construction of meaningful dynamic risk maps. Significant aspects of the application of this methodology, regarding the nature and the properties (e.g. local variability, dependence range, marginal distributions) of the underlying random field, as well as in relation to the increasing value of the reference threshold, are discussed and illustrated based on simulation under a variety of scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adler RJ (1981) The geometry of random fields. Wiley, Chichester

    Google Scholar 

  • Adler RJ (2008) Some new random field tools for spatial analysis. Stoch Environ Res Risk Assess 22:809–822

    Article  Google Scholar 

  • Adler RJ, Taylor JE (2007) Random fields and geometry. Springer, New York

    Google Scholar 

  • Adler RJ, Samorodnitsky G, Taylor JE (2010) Excursion sets of three classes of stable random fields. Adv Appl Probab 42:293–318

    Article  Google Scholar 

  • Adler RJ, Samorodnitsky G, Taylor JE (2013) High-level excursion set geometry for non-Gaussian infinitely divisible random fields. Ann Probab 41:134–169

    Article  Google Scholar 

  • Angulo JM, Madrid AE (2010) Structural analysis of spatio-temporal threshold exceedances. Environmetrics 21:415–438

    Article  Google Scholar 

  • Angulo JM, Madrid AE (2014) A deformation/blurring-based spatio-temporal model. Stoch Environ Res Risk Assess 28:1061–1073

    Article  Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Fin 9:203–228

    Article  Google Scholar 

  • Azäis JM, Wschebor M (2009) Level sets and extrema of random processes and fields. Wiley, Chichester

    Book  Google Scholar 

  • Bernardi M, Durante F, Jaworski P, Petrella L, Salvadori G (2018) Conditional risk based on multivariate hazard scenarios. Stoch Environ Res Risk Assess 32(1):203–211

    Article  Google Scholar 

  • Brown PE, Karesen KF, Roberts GO, Tonellato S (2000) Blur-generated non-separable space–time models. J R Stat Soc Ser B 62:847–860

    Article  Google Scholar 

  • Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic geometry and its applications. Wiley, Chichester

    Book  Google Scholar 

  • Christakos G (1992) Random field models in earth sciences. Academic Press, San Diego

    Google Scholar 

  • Christakos G (2000) Modern spatio-temporal geostatistics. Oxford University Press, New York

    Google Scholar 

  • Christakos G, Hristopulos DT (1996) Stochastic indicators for waste site characterization. Water Resour Res 32:2563–2578

    Article  CAS  Google Scholar 

  • Christakos G, Hristopulos DT (1997) Stochastic indicator analysis of contaminated sites. J Appl Probab 34:988–1008

    Article  Google Scholar 

  • Craigmile PF, Cressie N, Santner TJ, Rao Y (2005) A loss function approach to identifying environmental exceedances. Extremes 8:143–159

    Article  Google Scholar 

  • Filipović D, Kupper M (2008) Optimal capital and risk transfers for group divesification. Math Fin 18:55–76

    Article  Google Scholar 

  • Föllmer H, Schied A (2002) Convex measures of risk and trading constraints. Fin Stoch 6:429–447

    Article  Google Scholar 

  • Föllmer H, Schied A (2016) Stochastic finance. An introduction in discrete time. Walter de Gruyter GmbH & Co. KG, Berlin

    Book  Google Scholar 

  • French JP, Sain SR (2013) Spatio-temporal exceedance locations and confidence regions. Ann Appl Stat 7:1421–1449

    Article  Google Scholar 

  • Frittelli M, Gianin E (2002) Putting order in risk measures. J Bank Fin 26:1473–1486

    Article  Google Scholar 

  • Gneiting T, Schlather M (2004) Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev 46:269–282

    Article  Google Scholar 

  • Haier A, Molchanov I, Schmutz M (2016) Intragroup transfers, intragroup divesification and their risk assessment. Ann Fin 12:363–392

    Article  Google Scholar 

  • Kleinow J, Moreira F, Strobl S, Vähämaa S (2017) Measuring systemic risk: a comparison of alternative market-based approaches. Fin Res Lett 21:40–46

    Article  Google Scholar 

  • Klüppelberg C, Straub D, Welpe IM (eds) (2014) Risk—a multidisciplinary introduction. Springer, Berlin

    Google Scholar 

  • Lahiri S, Kaiser MS, Cressie N, Hsu NJ (1999) Prediction of spatial cumulative distribution functions using subsampling. J Am Stat Assoc 94:86–97

    Article  Google Scholar 

  • Leonenko N, Olenko A (2014) Sojourn measures of Student and Fisher–Snedecor random fields. Bernoulli 20:1454–1483

    Article  Google Scholar 

  • Li QQ, Li YP, Huang GH, Wang CX (2018) Risk aversion based interval stochastic programming approach for agricultural water management under uncertainty. Stoch Environ Res Risk Assess 32(3):715–732

    Article  Google Scholar 

  • Madrid AE, Angulo JM, Mateu J (2012) Spatial threshold exceedance analysis through marked point processes. Environmetrics 23:108–118

    Article  Google Scholar 

  • Madrid AE, Angulo JM, Mateu J (2016) Point pattern analysis of spatial deformation and blurring effects on exceedances. J Agric Biol Environ Stat 21:512–530

    Article  Google Scholar 

  • Piterbarg VI (1996) Asymptotic methods in the theory of Gaussian processes and fields. American Mathematical Society, Providence

    Google Scholar 

  • Souza SRSD, Silva TC, Tabak BM, Guerra SM (2016) Evaluating systemic risk using bank default probabilities in financial networks. J Econ Dyn Control 66:54–75

    Article  Google Scholar 

  • Vanmarcke E (2010) Random fields. Analysis and synthesis. World Scientific, Singapore

    Book  Google Scholar 

  • Wright DL, Stern HS, Cressie N (2003) Loss functions for estimation of extrema with an application to disease mapping. Can J Stat 31:251–266

    Article  Google Scholar 

  • Yaglom AM (1987a) Correlation theory of stationary and related random functions I—basic results. Springer, New York

    Google Scholar 

  • Yaglom AM (1987b) Correlation theory of stationary and related random functions II—supplementary notes and references. Springer, New York

    Google Scholar 

  • Yang Y, Christakos G (2015) Spatio-temporal characterization of ambient PM2.5 concentrations in Shandong province (China). Environ Sci Technol 49:13431–13438

    Article  CAS  Google Scholar 

  • Zhang J, Craigmile PF, Cressie N (2008) Loss function approaches to predict a spatial quantile and its exceedance region. Technometrics 50:216–227

    Article  Google Scholar 

Download references

Acknowledgements

The authors are particularly grateful to the Associate Editor and the Reviewers for their detailed comments and constructive suggestions, which have led to significant improvements in the final version of the manuscript. This work has been partially supported by Grants MTM2012-32666 and MTM2015-70840-P of Spanish MINECO/FEDER, EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Angulo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, J.L., Madrid, A.E. & Angulo, J.M. Quantile-based spatiotemporal risk assessment of exceedances. Stoch Environ Res Risk Assess 32, 2275–2291 (2018). https://doi.org/10.1007/s00477-018-1562-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1562-9

Keywords

Navigation