Skip to main content
Log in

A computationally efficient method for uncertainty analysis of SWAT model simulations

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The physically based distributed hydrological models are ideal for hydrological simulations; however most of such models do not use the basic equations pertaining to mass, energy and momentum conservation, to represent the physics of the process. This is plausibly due to the lack of complete understanding of the hydrological process. The soil and water assessment tool (SWAT) is one such widely accepted semi-distributed, conceptual hydrological model used for water resources planning. However, the over-parameterization, difficulty in its calibration process and the uncertainty associated with predictions make its applications skeptical. This study considers assessing the predictive uncertainty associated with distributed hydrological models. The existing methods for uncertainty estimation demand high computational time and therefore make them challenging to apply on complex hydrological models. The proposed approach employs the concepts of generalized likelihood uncertainty estimation (GLUE) in an iterative procedure by starting with an assumed prior probability distribution of parameters, and by using mutual information (MI) index for sampling the behavioral parameter set. The distributions are conditioned on the observed information through successive cycles of simulations. During each cycle of simulation, MI is used in conjunction with Markov Chain Monte Carlo procedure to sample the parameter sets so as to increase the number of behavioral sets, which in turn helps reduce the number of cycles/simulations for the analysis. The method is demonstrated through a case study of SWAT model in Illinois River basin in the USA. A comparison of the proposed method with GLUE indicates that the computational requirement of uncertainty analysis is considerably reduced in the proposed approach. It is also noted that the model prediction band, derived using the proposed method, is more effective compared to that derived using the other methods considered in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alazzy AA, Lü H, Zhu Y (2015) Assessing the uncertainty of the Xinanjiang rainfall-runoff model: effect of the likelihood function choice on the GLUE method. J Hydrol Eng 20(10). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001174

  • Anand S, Mankin KR, McVay KA, Janssen KA, Barnes PL, Pierzynski GM (2007) Calibration and validation of ADAPT and SWAT for field-scale runoff prediction. J Am Water Resour Assoc 43(4):899–910

    Article  Google Scholar 

  • Arabi M, Govindaraju RS, Engel B, Hantush M (2007) Multiobjective sensitivity analysis of sediment and nitrogen processes with a watershed model. Water Resour Res 43(6):W06409. https://doi.org/10.1029/2006WR005463

  • Arnold JG, Fohrer N (2005) SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrol Process 19(3):563–572

    Article  Google Scholar 

  • Arnold JG, Allen PM, Bernhardt G (1993) A comprehensive surface-ground water flow model. J Hydrol 142(1–4):47–69

    Article  Google Scholar 

  • Athira P, Sudheer KP (2015) A method to reduce the computational requirement while assessing uncertainty of complex hydrological models. Stoch Environ Res Rick Assess 29(3):847–859

    Article  Google Scholar 

  • Barlund I, Kirkkala T, Malve O, Kämäri J (2007) Assessing the SWAT model performance in the evaluation of management actions for the implementation of the water framework directive in a finnish catchment. Environ Model Softw 22(5):719–724

    Article  Google Scholar 

  • Beven KJ (2006) A manifesto for the equifinality thesis. J Hydrol 320:18–36

    Article  Google Scholar 

  • Beven KJ, Binley AM (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6:279–298. https://doi.org/10.1002/hyp.3360060305

    Article  Google Scholar 

  • Beven K, Binley A (2014) GLUE: 20 years on. Hydrol Process 28:5897–5918

    Article  Google Scholar 

  • Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the glue methodology. J Hydrol 249(14):11–29

    Article  Google Scholar 

  • Blazkova S, Beven K (2009) A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic. Water Resour Res 45:W00B16. https://doi.org/10.1029/2007wr006726

    Article  Google Scholar 

  • Carota C, Parmigiani G, Polson NG (1996) Diagnostic measures for model criticism. J Am Stat Assoc 91:753–762

    Article  Google Scholar 

  • Christensen S (2004) A synthetic groundwater modeling study of the accuracy of GLUE uncertainty intervals. Nord Hydrol 35(1):45–59

    Article  Google Scholar 

  • Cibin R, Sudheer KP, Chaubey I (2010) Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrol Processes 24(9):1133–1148

    Article  Google Scholar 

  • Cibin R, Athira P, Sudheer KP, Chaubey I (2014) Application of distributed hydrological models for predictions in ungauged basins: A method to quantify predictive uncertainty. Hydrol Proces. https://doi.org/10.1002/hyp.9721

    Article  Google Scholar 

  • Confessor RB Jr, Whittaker GW (2007) Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and pareto optimization. J Am Water Resour Assoc 43(4):981–989

    Article  CAS  Google Scholar 

  • Demaria EM, Njissen B, Wagener T (2007) Monte Carlo sensitivity analysis of land surface parameters using the variable iniltration capacity model. J Geophys Res 112:D11113

    Article  Google Scholar 

  • Freer J, Beven KJ, Ambroise B (1996) Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 32(7):2161–2173

    Article  Google Scholar 

  • Freni G, Mannina G (2010) Bayesian approach for uncertainty quantification in water quality modeling: the influence of prior distribution. J Hydrol 392:31–39

    Article  CAS  Google Scholar 

  • Gardner RH, O’Neill RV (1983) Parameter uncertainty and model predictions: a review of Monte Carlo results. In: Berk MB, Straten GV (eds) Uncertainty and forecasting of water quality. Springer, New York, pp 245–257

    Chapter  Google Scholar 

  • Gassman PW, Reyes MR, Geen CH, Arnold JG (2007) The soil and water assessment assessment tool: historical development, applications and future research directions. Trans ASABE 50(4):1211–1250

    Article  CAS  Google Scholar 

  • Haan CT (2002) Statistical methods in hydrology. Iowa State Press, Ames

    Google Scholar 

  • Jeremiah E, Sisson SA, Sharma A, Marshall L (2012) Efficient hydrological model parameter optimization with Sequential Monte Carlo Sampling. Environ Model Softw 38:283–295

    Article  Google Scholar 

  • Jin X, Chong-Yu Xu, Zhang Q, Singh VP (2010) Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J Hydrol 383:147–155

    Article  Google Scholar 

  • Katz RW (2002) Techniques for estimating uncertainty in climate change scenarios and impact studies. Clim Res 20:167–185

    Article  Google Scholar 

  • Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty catchment models: the Metropolis algorithm. J Hydrol 211:69–85

    Article  Google Scholar 

  • Li H, Wu J (2006) Uncertainty analysis in ecological studies. In: Wu J, Jones KB, Li H, Loucks OL (eds) Scaling and uncertainty analysis in ecology:methods and applications. Springer, Netherlands

    Google Scholar 

  • Li L, Xia J, Xu CY, Singh VP (2010) Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models. J Hydrol 390(3–4):210–221

    Article  Google Scholar 

  • MacKay DJC (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge. ISBN 0-521-64298-1

    Google Scholar 

  • Manache G, Melching CS (2008) Identification of reliable regression- and correlation-based sensitivity measures for importance ranking of water-quality model parameters. Environ Model Softw 23:549–562

    Article  Google Scholar 

  • Mantovan P, Todini E (2006) Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. J Hydrol 330:368–381. https://doi.org/10.1016/j.jhydrol.2006.04.046

    Article  Google Scholar 

  • May RJ, Dandy GC, Maier HR, Nixon JB (2008) Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environ Model Softw 23(10–11):1289–1299

    Article  Google Scholar 

  • McMillan H, Clark M (2009) Rainfall-runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme. Water Resour Res 45:W04418. https://doi.org/10.1029/2008WR007288

    Article  Google Scholar 

  • Migliaccio KW, Chaubey I (2008) Spatial distributions and stochastic parameter influences on SWAT flow and sediment predictions. J Hydrol Eng 13(4):258–269

    Article  Google Scholar 

  • Mirzaei M, Huang YF, El-Shafie A, Shatirah A (2015) Application of the generalized likelihood uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models: a review. Stoch Environ Res Risk Assess 29:1265–1273

    Article  Google Scholar 

  • Montanari A (2005) Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations. Water Resour Res 41:W08406. https://doi.org/10.1029/2004WR003826

    Article  Google Scholar 

  • Mukund Nilakantan J, Ponnambalam SG et al (2015) Bio-inspired search rithms to solve robotic assembly line balancing problems. Neural Comput Appl 26(6):1379–1393

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil water assessment tool theoretical documentation version 2000. Texas Water Resource Institute, College Station (TWRI Report, TR-191)

    Google Scholar 

  • Nott DJ, Marshall L, Brown J (2012) Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: what’s the connection? Water Resour Res 48:W12602. https://doi.org/10.1029/2011WR011128

    Article  Google Scholar 

  • Rastetter EB, King AW, Cosby BJ, Hornberger GM, O’Neill RV, Hobbie JE (1992) Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems. Ecol Appl 2:55–70

    Article  Google Scholar 

  • Refsgaard JC, Sluijs JP, Hojberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modeling process—a framework and guidance. Environ Model Softw 22:1543–1556

    Article  Google Scholar 

  • Sadegh M, Vrugt JA (2013) Bridging the gap between GLUE and formal statistical approaches: approximate Bayesian computation. Hydrol Earth Syst Sci 17:4831–4850

    Article  Google Scholar 

  • Schoups G, Vrugt JA (2010) A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resour Res 46:W10531. https://doi.org/10.1029/2009WR008933

    Article  Google Scholar 

  • Smith PJ, Beven K, Tawn JA (2008) Informal likelihood measures in model assessment: theoretic development and investigation. Adv Water Resour Res 31:1087–1100

    Article  Google Scholar 

  • Stedinger JR, Vogel RM, Lee SU, Batchelder R (2008) Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour Res. https://doi.org/10.1029/2008wr006822

    Article  Google Scholar 

  • Steuer R, Kurths J, Daub CO, Weise J, Selbiq J (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18:S231–S240

    Article  Google Scholar 

  • Talebizadeh M, Morid S, Ayyoubzadeh SA, Ghasemzadeh M (2010) Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resour Manag 24:1747–1761. https://doi.org/10.1007/s11269-009-9522-2

    Article  Google Scholar 

  • Uniyal B, Jha MK, Verma AK (2015) Parameter identification and uncertainty analysis for simulating streamflow in a river basin of Eastern India. Hydrol Process 29:3744–3766

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. https://doi.org/10.1029/2002wr001642

    Article  Google Scholar 

  • Vrugt JA, Braak CJF, Clark M, Hyman JM, Robinson BA (2008a) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res 44:W00B09. https://doi.org/10.1029/2007wr006720

    Article  Google Scholar 

  • Vrugt JA, Braak CJF, Gupta HV, Robinson BA (2008b) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch Environ Res Risk Assess 23:1011–1026. https://doi.org/10.1007/s00477-008-0274-y

    Article  Google Scholar 

  • Warmink JJ, Janssen JAEB, Booij MJ, Krol MS (2010) Identification and classification of uncertainties in the application of environmental models. Environ Model Softw 25:1518–1527

    Article  Google Scholar 

  • West M (1993) Approximating posterior distributions by mixture. J R Stat Soc B 55(2):409–422

    Google Scholar 

  • Wiwatenadate P, Claycamp HG (2000) Error propagation of uncertainties in multiplicative models. Hum Ecol Risk Assess 6:355–368

    Article  Google Scholar 

  • Wu Y, Liu S (2012) Automating calibration, sensitivity and uncertainty analysis of complex models using the R package flexible modeling environment (FME): SWAT as an example. Environ Model Softw 31:99–109

    Article  Google Scholar 

  • Xiong LH, Wan M, Wei XJ, O’Connor KM (2009) Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrol Sci J-Journal Des Sciences Hydrologiques 54(5):852–871

    Article  Google Scholar 

  • Yen H, Jeong J, Feng QY, Deb D (2015) Assessment of input uncertainty in SWAT using latent variables. Water Resour Manag 29:1137–1153

    Article  Google Scholar 

  • Zhang Z (2012) Iterative posterior inference for Bayesian Kriging. Stoch Environ Res Rick Assess 26(7):913–923

    Article  Google Scholar 

  • Zhang W, Li T (2015) The influence of objective function and acceptability threshold on uncertainty assessment of an urban drainage hydraulic model with generalized likelihood uncertainty estimation methodology. Water Resour Manag 29:2059–2072

    Article  Google Scholar 

  • Zhang X, Srinivasan R, Liew MV (2008) Multi-site calibration of the SWAT model for hydrologic modeling. Trans ASABE 51(6):2039–2049

    Article  Google Scholar 

  • Zhang Y, Xia J, Shao X (2011) Water quantity and quality simulation by improved SWAT in highly regulated Huai river basin of China. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-011-0546-9

    Article  Google Scholar 

  • Zhang J, Li Q, Guo B, Gong H (2015) The comparative study of multi-site uncertainty evaluation method based on SWAT model. Hydrol Process 29:2994–3009

    Article  Google Scholar 

  • Zhenyao S, Lei C, Tao C (2012) The influence of parameter distribution uncertainty on hydrological and sediment modeling: a case study of SWAT model applied to the Daning watershed of the three Gorges Reservoir Region China. Stoch Env Res Risk Assess. https://doi.org/10.1007/s00477-012-0579-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Sudheer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, P., Nanda, C. & Sudheer, K.P. A computationally efficient method for uncertainty analysis of SWAT model simulations. Stoch Environ Res Risk Assess 32, 1479–1492 (2018). https://doi.org/10.1007/s00477-018-1538-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1538-9

Keywords

Navigation