Skip to main content
Log in

Random partitioning and adaptive filters for multiple-point stochastic simulation

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Multiple-point geostatistical simulation is used to simulate the spatial structures of geological phenomena. In contrast to conventional two-point variogram based geostatistical methods, the multiple-point approach is capable of simulating complex spatial patterns, shapes, and structures normally observed in geological media. A commonly used pattern based multiple-point geostatistical simulation algorithms is called FILTERSIM. In the conventional FILTERSIM algorithm, the patterns identified in training images are transformed into filter score space using fixed filters that are neither dependent on the training images nor on the characteristics of the patterns extracted from them. In this paper, we introduce two new methods, one for geostatistical simulation and another for conditioning the results. At first, new filters are designed using principal component analysis in such a way to include most structural information specific to the governing training images resulting in the selection of closer patterns in the filter score space. We then propose to combine adaptive filters with an overlap strategy along a raster path and an efficient conditioning method to develop an algorithm for reservoir simulation with high accuracy and continuity. We also combine image quilting with this algorithm to improve connectivity a lot. The proposed method, which we call random partitioning with adaptive filters simulation method, can be used both for continuous and discrete variables. The results of the proposed method show a significant improvement in recovering the expected shapes and structural continuity in the final simulated realizations as compared to those of conventional FILTERSIM algorithm and the algorithm is more than ten times faster than FILTERSIM because of using raster path and using small overlap specially when we use image quilting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdollahifard MJ (2016) Fast multiple-point simulation using a data-driven path and an efficient gradient-based search. Comput Geosci 86:64–74

    Article  Google Scholar 

  • Aitokhuehi I, Durlofsky LJ (2005) Optimizing the performance of smart wells in complex reservoirs using continuously updated geological models. J Pet Sci Eng 48:254–264

    Article  CAS  Google Scholar 

  • Alcolea A, Renard P, Mariethoz G, Bertone F (2009) Reducing the impact of a desalination plant using stochastic modeling and optimization techniques. J Hydrol 365:275–288

    Article  CAS  Google Scholar 

  • Arpat GB, Caers J (2007) Conditional simulation with patterns. Math Geosci 39(2):177–203

    Google Scholar 

  • Caers J, Hoffman T (2006) The probability perturbation method: a new look at Bayesian inverse modeling. Math Geol 38(1):81–100

    Article  Google Scholar 

  • Carvalho PRM, Costa JFCL, Rasera LG, Varella LES (2016) Geostatistical facies simulation with geometric patterns of a petroleum reservoir. Stoch Environ Res Risk Assess. doi:10.1007/s00477-016-1243-5

    Google Scholar 

  • Chatterjee S, Mohanty MM (2015) Automatic cluster selection using gap statistics for pattern-based multi-point geostatistical simulation. Arab J Geosci 9(8):7691–7704

    Article  Google Scholar 

  • Cox TF, Cox MA (1994) Multidimensional scaling. Chapman & Hall, London

    Google Scholar 

  • Duda R, Hart P, Stork D (2001) Pattern classification. Wiley, Hoboken

    Google Scholar 

  • Efros AA, Freeman WT (2001) Image quilting for texture synthesis and transfer. Paper presented at the ACM SIGGRAPH conference on computer graphics, Los Angeles

  • Endres DM, Schindelin JE (2003) A new metric for probability distributions. IEEE Trans Inf Theo 49(7):1858–1860

    Article  Google Scholar 

  • Fukunaga K (2013) Introduction to statistical pattern recognition. Acad Press, Cambridge

    Google Scholar 

  • Gardet C, Ravalec M, Gloaguen E (2016) Pattern-based conditional simulation with a raster: a few techniques to make it more efficient. Stoch Environ Res Risk Assess 30(2):429–446

    Article  Google Scholar 

  • Guardiano FB, Srivastava RM (1993) Multivariate geostatistics: beyond bivariate moments. In: Soares AO (ed) Proceeding of geostatistics Troia 1992. Springer, Netherlands, pp 133–144

    Google Scholar 

  • Honarkhah M, Caers J (2010) Stochastic simulation of patterns using distance-based pattern modeling. Math Geosci 42:487–517

    Article  Google Scholar 

  • Jolliffe I (1986) Principal component analysis. Springer, New York

    Book  Google Scholar 

  • Mahmud K, Mariethoz G, Caers J, Tahmasebi P, Baker A (2014) Simulation of earth textures by conditional image quilting. Water Resour Res. doi:10.1002/2013WR015069

    Google Scholar 

  • Mariethoz G, Renard P, Caers J (2010) Bayesian inverse problem and optimization with iterative spatial resampling. Water Resour Res 46:17. doi:10.1029/2010WR009274

    Google Scholar 

  • Mattoccia S, Tombari F, Di Stefano L (2008) Reliable rejection of mismatching candidates for efficient ZNCC template matching. In: Image processing. ICIP 2008. 15th IEEE international, pp 849–852

  • Michael H, Boucher A, Sun T, Caers J, Gorelick S (2010) Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity. Water Resour Res 46:W05527

    Article  Google Scholar 

  • Renard P (2007) Stochastic hydrogeology: What professionals really need? Ground Water 45(5):531–541

    Article  CAS  Google Scholar 

  • Sarma P, Durlofsky LJ, Aziz K (2008) Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics. Math Geosci 40(1):3–32

    Article  Google Scholar 

  • Scholkopf B, Smola AJ (2002) Learning with Kernels. MIT Press, Cambridge, p 664

    Google Scholar 

  • Scholkopf B, Smola AJ, Muller KR (1998) Nonlinear component analysis as a Kernel eigenvalue problem. Neur Comput 10:1299–1319

    Article  Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21

    Article  Google Scholar 

  • Strebelle S, Cavelius C (2013) Solving speed and memory issues in multiple-point statistics simulation program SNESIM. Math Geosci 46:171–186

    Article  Google Scholar 

  • Strebelle S, Payrazyan K, Caers J (2002) Modeling of a deep water turbidite reservoir conditional to seismic data using multiple-point geostatistics. In: SPE annual technical conference and exhibition, number SPE 77425. Society of Petroleum Engineers

  • Tahmasebi P, Hezarkhani A, Sahimi M (2012) Multiple-point geostatistical modeling based on the cross-correlation functions. Comput Geosci 16:779–797

    Article  Google Scholar 

  • Tan X, Tahmasebi P, Caers J (2014) Comparing training-image based algorithms using an analysis of distance. Math Geosci 46(2):149–169

    Article  Google Scholar 

  • Tang Y, Zhang J, Jing L, Li H (2015) Digital elevation data fusion using multiple-point geostatistical simulation. IEEE J Sel Top Appl Earth Obs Remote Sens 8(10):4922–4934

    Article  Google Scholar 

  • Wu J (2007) 4D seismic and multiple-point pattern data integration using geostatistics. Ph.D. thesis dissertation, Stanford University

  • Wu J, Boucher A, Zhang T (2008) A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM. Comput Geosci 34:1863–1876

    Article  CAS  Google Scholar 

  • Zhang T (2006) Filter-based training pattern classification for spatial pattern simulation. Ph.D. Dissertation. Stanford University. Stanford CA, pp 137

  • Zhang T, Switzer P, Journel AG (2006) Filter-base classification of training image patterns for spatial simulation. Math Geol 38(1):63–80

    Article  CAS  Google Scholar 

  • Zhang T, Du Y, Huang T, Yang J, Lu F, Li X (2016) Reconstruction of porous media using ISOMAP-based MPS. Stoch Environ Res Risk Assess 30(1):395–412

    Article  Google Scholar 

  • Zhang T, Du Y, Li B, Zhang A (2017a) Stochastic reconstruction of spatial data using LLE and MPS. Stoch Environ Res Risk Assess 31(1):243–256

    Article  Google Scholar 

  • Zhang T, Gelman A, Laronga R (2017b) Structure and texture-based fullbore image reconstruction. Math Geosci 49:195–215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoureh Sharifzadehlari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifzadehlari, M., Fathianpour, N., Renard, P. et al. Random partitioning and adaptive filters for multiple-point stochastic simulation. Stoch Environ Res Risk Assess 32, 1375–1396 (2018). https://doi.org/10.1007/s00477-017-1453-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1453-5

Keywords

Navigation