Skip to main content
Log in

Resources and environmental systems management under synchronic interval uncertainties

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Resources and environmental systems management (RESM) is challenged by the synchronic effects of interval uncertainties in the related practices. The synchronic interval uncertainties are misrepresented as random variables, fuzzy sets, or interval numbers in conventional RESM programming techniques including stochastic programming. This may lead to ineffectiveness of resources allocation, high costs of recourse measures, increased risks of unreasonable decisions, and decreased optimality of system profits. To fill the gap of few corresponding studies, a synchronic interval linear programming (SILP) method is proposed in this study. The proposition of interval sets and interval functions and coupling them with linear programming models lead to development of an SILP model for RESM. This enables incorporation of interval uncertainties in resource constraints and synchronic interval uncertainties in the programming objective into the optimization process. An analysis of the distribution-independent geometric properties of the feasible regions of SILP models results in proposition of constraint violation likelihoods. The tradeoff between system optimality and constraint violation is analyzed. The overall optimality of SILP systems under synchronic intervalness is quantified through proposition of integrally optimal solutions. Integration of these efforts leads to a violation-constrained interval integral method for optimization of RESM systems under synchronic interval uncertainties. Comparisons with selected existing methods reveal the effectiveness of SILP at eliminating negativity of synchronic intervalness, enabling risk management of and achieving overall optimality of RESM systems, and enhancing the reliability of optimization techniques for RESM problems. The exploited framework for analyzing synchronic interval uncertainties in RESM systems is helpful for addressing synchronisms of other uncertainties such as randomness or fuzziness and avoiding the resultant decision mistakes and disasters due to neglecting them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad A, El-Shafie A, Razali SFM, Mohamad ZS (2014) Reservoir optimization in water resources: a review. Water Resour Manage 28(11):3391–3405

    Article  Google Scholar 

  • Alefeld G, Mayer G (2000) Interval analysis: theory and applications. J Comput Appl Math 121(1):421–464

    Article  Google Scholar 

  • Anderson DR, Sweeney DJ, Williams TA, Camm JD (2015) An introduction to management science: quantitative approaches to decision making (Chapter 2). Cengage Learning, p 30

  • Banos R, Manzano-Agugliaro F, Montoya FG, Gil C, Alcayde A, Gómez J (2011) Optimization methods applied to renewable and sustainable energy: a review. Renew Sustain Energy Rev 15(4):1753–1766

    Article  Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, pp 9–16

    Google Scholar 

  • Ben-Tal A, Nemirovski A (2002) Robust optimization–methodology and applications. Math Program 92(3):453–480

    Article  Google Scholar 

  • Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501

    Article  Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  Google Scholar 

  • Birge JR, Louveaux F (2011) Introduction to stochastic programming. Springer, Berlin

    Book  Google Scholar 

  • Bitran GR (1980) Linear multiple objective problems with interval coefficients. Manage Sci 26(7):694–706

    Article  Google Scholar 

  • Chanas S, Kuchta D (1996) Multiobjetive programming in optimization of interval objective functions: a generalized approach. Eur J Oper Res 94:594–598

  • Charnes A, Cooper WW (1959) Chance-constrained programming. Manag Sci 6(1):73–79

    Article  Google Scholar 

  • Charnes A, Granot F, Phillips F (1977) An algorithm for solving interval linear programming problems. Oper Res 25:688–695

    Article  Google Scholar 

  • Cheng GH, Huang GH, Dong C (2015a) Synchronic interval Gaussian mixed-integer programming for air quality management. Sci Total Environ Elsevier 538(15):986–996

  • Cheng GH, Huang GH, Dong C (2015b) Interval recourse linear programming for resources and environmental systems management under uncertainty. J Environ Inf (International Society of Environmental Information Sciences). Online express

  • Cheng GH, Huang GH, Dong C (2017) Convex contractive interval linear programming for resources and environmental systems management. Stoch Env Res Risk Assess 31(1):205–224

  • Cheng GH, Huang GH, Li YP, Cao MF, Fan YR (2009) Planning of municipal solid waste management systems under dual uncertainties: a hybrid interval stochastic programming approach. Stoch Environ Res Risk Assess 23(6):707–720

    Article  Google Scholar 

  • Chinneck JW, Ramadan K (2000) Linear programming with interval coefficients. J Oper Res Soc 51(2):209–220

    Article  Google Scholar 

  • Dantzig GB (1947) Maximization of a linear function of variables subject to linear inequalities. Activity Analysis of Production and Allocation, New York-London 339–347

  • Dantzig GB (1963) Linear programming and extensions. Princeton University Press, Princeton

    Book  Google Scholar 

  • Dantzig GB, Wolfe P (1960) The decomposition principle for linear programs. Oper Res 8:101–111

    Article  Google Scholar 

  • Dong C, Huang GH, Cai YP, Li W, Cheng GH (2014a) Fuzzy interval programming for energy and environmental systems management under constraint-violation and energy-substitution effects: a case study for the city of Beijing. Energy Econ 11(2014):46. doi:10.1016/j.eneco.2014.09.024

    Google Scholar 

  • Dong C, Huang GH, Cai YP, Liu Y (2012) An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing City. Energy (Elsevier) 37(1):673–688

    Google Scholar 

  • Dong C, Huang GH, Cai YP, Liu Y (2013a) Robust planning of energy management systems with environmental and constraint-conservative considerations under multiple uncertainties. Energy Convers Manag 65:471–486. doi:10.1016/j.enconman.2012.09.001

    Article  Google Scholar 

  • Dong C, Huang GH, Cai YP, Xu Y (2011) An interval-parameter minimax regret programming approach for power management systems planning under uncertainty. Appl Energy 88(8–88):2835–2845. doi:10.1016/j.apenergy.2011.01.056

    Article  Google Scholar 

  • Dong C, Huang GH, Cai YP, Yue WC, Rong QQ (2014b) An interval-parameter fuzzy linear programming approach for accounting and planning of energy-environmental management systems. J Environ Account Manag 2(1):13–29. doi:10.5890/JEAM.2014.03.002

    Article  Google Scholar 

  • Dong C, Huang GH, Tan Q (2015) A robust optimization modelling approach for managing water and farmland use between anthropogenic modification and ecosystems protection under uncertainties. Ecol Eng 76:95–109. doi:10.1016/j.ecoleng.2014.04.003

    Article  Google Scholar 

  • Dong C, Huang GH, Tan Q, Cai YP (2014c) Coupled planning of water resources and agricultural land-use based on an inexact-stochastic programming model. Front Earth Sci. doi:10.1007/s11707-013-0388-5

    Google Scholar 

  • Dong C, Tan Q, Huang GH, Cai YP (2013b) A dual-inexact fuzzy stochastic model for water resources management and non-point source pollution mitigation under multiple uncertainties. Hydrol Earth Syst Sci. doi:10.5194/hessd-11-987-2014

    Google Scholar 

  • Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: an overview. Eur J Oper Res 235(3):471–483

    Article  Google Scholar 

  • Grinstead C, Snell JL (1997) Introduction to probability. American Mathematical Society, Providence, pp 10–11

    Google Scholar 

  • Hladık M (2012) Interval linear programming: a survey. In: Mann ZA (ed) Linear Programming-New frontiers in theory and applications, ch 2. Nova Science Publishers, New York, pp 85–120

  • Huang GH, Baetz BW, Patry GG (1992) An interval linear programming approach for municipal solid waste management planning under uncertainty. Civ Eng Syst 9:319–335

    Article  CAS  Google Scholar 

  • Inuiguchi M (1993) Fuzzy mathematical programming. Fuzzy Operations Research, Nikkan Kougyou Sinbunsha, Tokyo, pp 41–90

    Google Scholar 

  • Inuiguchi M, Ramík J (2000) Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst 111(1):3–28

    Article  Google Scholar 

  • Inuiguchi M, Ramik J, Tanino T, Vlach M (2003) Satisficing solutions and duality in interval and fuzzy linear programming. Fuzzy Sets Syst 135:151–177

    Article  Google Scholar 

  • Inuiguchi M, Sakawa M (1995) Minimax regret solution to linear programming problems with an interval objective function. Eur J Oper Res 86:526–536

    Article  Google Scholar 

  • Inuiguchi M, Sakawa M (1997) An achievement rate approach to linear programming problems with an interval objective function. J Oper Res Soc 48(1):25–33

    Article  Google Scholar 

  • Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Oper Res 48:219–225

    Article  Google Scholar 

  • Ivanov D, Dolgui A, Sokolov B (2012) Applicability of optimal control theory to adaptive supply chain planning and scheduling. Annu Rev Control 36(1):73–84

    Article  Google Scholar 

  • Jamison KD, Lodwick WA (2001) Fuzzy linear programming using a penalty method. Fuzzy Sets Syst 119:97–110

    Article  Google Scholar 

  • Kahraman C (2008) Fuzzy multi-criteria decision making: theory and applications with recent developments. Springer, Berlin

    Book  Google Scholar 

  • Kantorovich LV (1940) A new method of solving some classes of extremal problems. Doklady Akad Sci USSR 28:211–214

    Google Scholar 

  • Klaus M, Albert T (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res 100(B7):12431–12447

    Article  Google Scholar 

  • Lee JH (2011) Model predictive control: review of the three decades of development. Int J Control Autom Syst 9(3):415–424

    Article  Google Scholar 

  • Levin VI (1994) Boolean linear programming with interval coefficients. Autom Remote Control 55:1019–1028

    Google Scholar 

  • Lin MH, Tsai JF, Yu CS (2012) A review of deterministic optimization methods in engineering and management. Math Probl Eng 2012:1–15

  • Luhandjula MK (2014) Fuzzy optimization: milestones and perspectives. Fuzzy Sets Syst 274:4–11

    Article  Google Scholar 

  • Maqsood I, Huang GH (2003) A two-stage interval-stochastic programming model for waste management under uncertainty. J Air Waste Manag Assoc Air Waste Manag Assoc 53(5):540–552

    Article  Google Scholar 

  • Mérel P, Howitt R (2014) Theory and application of positive mathematical programming in agriculture and the environment. Annu Rev Resour Econ 6(1):451–470

    Article  Google Scholar 

  • Metropolis N, Ulam S (1949) The monte carlo method. J Am Stat Assoc 44(247):335–341

    Article  CAS  Google Scholar 

  • Moore RE (1979) Method and application of interval analysis. SIAM, Philadelphia

    Book  Google Scholar 

  • Peter K, Mayer J (1976) Stochastic linear programming. Springer, Berlin

    Google Scholar 

  • Prékopa A (1990) Sharp bound on probabilities using linear programming. Oper Res 38:227–239

    Article  Google Scholar 

  • Psacharopoulos G (2014) Economics of education: research and studies. Elsevier, Amsterdam

    Google Scholar 

  • Quaeghebeur E, Shariatmadar K, De Cooman G (2012) Constrained optimization problems under uncertainty with coherent lower previsions. Fuzzy Sets Syst 206:74–88

    Article  Google Scholar 

  • Rommelfanger H, Hanuscheck R, Wolf J (1989) Linear programming with fuzzy objectives. Fuzzy Sets Syst 29:31–48

    Article  Google Scholar 

  • Ruszczynski A, Shapiro A (2003) Stochastic programming. Handbooks in operations research and management science. Elsevier, Amsterdam

    Google Scholar 

  • Sengupta A, Pal TK (2000) On comparing interval sets. Eur J Oper Res 127:28–43

    Article  Google Scholar 

  • Sengupta A, Pal TK, Chakraborty D (2001) Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets Syst 119:129–138

    Article  Google Scholar 

  • Soyster AL (1973) Technical note: convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21(5):1154–1157

  • Steuer RE (1981) Algorithms for linear programming problems with interval objective function coefficients. Math Oper Res 6:33–348

    Article  Google Scholar 

  • Tang SC, Zhou S (2012) Research advances in environmentally and socially sustainable operations. Eur J Oper Res 223(3):585–594

    Article  Google Scholar 

  • Tong SC (1994) Interval set and fuzzy number linear programming. Fuzzy Sets Syst 66:301–306

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Plan (2016YFC0502800, 2016YFA0601502), the Natural Sciences Foundation (51520105013, 51679087), the 111 Project (B14008) and the Natural Science and Engineering Research Council of Canada. We are very grateful to the editor and two anonymous peer reviewers who provided many constructive comments on how to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohe Huang.

Appendix

Appendix

Lemma 1

Solutions under the conservative boundary are absolutely feasible, and that out of the optimistic boundary are infeasible.

Proof

Let R  = {X | A + Xb and X ≥ 0}, R + = {X | A Xb + and X ≥ 0}, and R(b, A) = {X | AXb; A AA +; X ≥ 0; b bb +; (b, A) ≠ (b , A +) or (b +, A ); (b +b ) + ∑ j=1,2,…,n (a + j a j ) > 0}. The lemma is equivalent with R  ⊂ R(b, A) ⊂ R +. Let X = (x 1,x 2,…,x n ) be any element in R , and A be a real vector satisfying A AA +. From definitions of R , we have A + Xb , X ≥ 0, and AXA + X. Namely, AXA + Xb b where b bb +. Thus, XR(b, A), i.e. R ⊆ R(b, A). Since (b, A) ≠ (b , A +), R absolutely belongs to R(b, A). Let X * = (x *1 , x *2 , …, x * n ) be any vector in R(b, A) and satisfy X *∉ R . Similarly, we have X *R +, i.e. R(b, A) ⊆ R +. Accordingly, R(b, A) absolutely belongs to R + because (b, A) ≠ (b +, A ).□

Proposition 1

Let X be any solution in R s where R s = {X | X ≥ 0; A + X > b ; A Xb +; (b +b ) + ∑ j=1,2,…,n (a + j a j ) > 0}. We have d X T + d X L > 0.

Proof

For any XR s, we have X ≥ 0, A + X > b , A Xb +, and (b +b ) + ∑ j=1,2,…,n (a + j    a j ) > 0. Since A + Xb > 0, b +A X ≥ 0, (A +)(A +)T > 0 and (A )(A )T > 0, we have d X T ≥ 0 and d X L ≥ 0. Accordingly, we have d X T + d X L ≥ 0. If d X T  = 0 and d X L  = 0, we have (A + Xb )/((A +)(A +)T) = 0 and (b +A X) / ((A )(A )T) = 0, i.e. A + X = b and A X = b +. Equivalently, ∑ j=1,2,…,n (a + j ·x j ) = b , ∑ j=1,2,…,n (a j ·x j ) = b +, and ∑ j=1,2,…,n (a + j a j x j  = b b +. Since ∑ j=1,2,…,n (a + j a j x j ≥ 0 and b b + ≤ 0, equality ∑ j=1,2,…,n (a + j a j x j  = b b + holds for any solution of non-negative decision variables x j (j = 1, 2, …, n) if and only if b + = b and a + j  = a j for any j ∈ {1, 2, …, n}. As a result, (b +b ) + ∑ j=1,2,…,n (a + j a j ) = 0, which contradicts with the given condition (b +b ) + ∑ j=1,2,…,n (a + j a j ) > 0. Thus, it does not hold that d X T  = d X L  = 0.□

Theorem 1

For any i ∈ {1, 2, …, t}, the ith constraint in SILP model (1) is equivalent to inequality (2).

Proof

From formulations of CVL i , we have inequality CVL i CVL imax is equivalent with [(A + i Xb i )/((A + i )(A + i )T)]/{[(A i + Xb i )/((A + i )(A + i )T)] + [(b i +A i X)/((A i )(A i )T)]} ≤ CVL imax. Since XR s, we have A + X > b , A Xb +, and (b +b ) + ∑ j=1,2,…,n (a + j a j ) > 0. Therefore, [(A + i )(A + i )T(b i +A i X) + (A i )(A i )T(A + i Xb i )] > 0. Besides, it holds for any i ∈ {1, 2, …, t} that (A i )(A i )T ≥ 0 and (A + i )(A + i )T ≥ 0. Thus, we have inequality [(A i + Xb i )/((A + i )(A + i )T)]/{[(A i + Xb i )/((A + i )(A + i )T)] + [(b i +A i X)/((A i )(A i )T)]} ≤ CVL imax is equivalent to [(A + i Xb i ) / ((A + i )(A i +)T)] ≤ (CVL imax){[(A + i Xb i ) / ((A + i )(A + i )T)] + [(b i +A i X) / ((A i )(A i )T)]}, (1 − CVL imax)(A + i Xb i )((A i )(A i )T) ≤ (CVL imax)(b + i A i X)((A + i )(A i +)T), and then [(1 − CVL imax)(A i )(A i )T A + i + (CVL imax)(A + i )(A i +)T A i ]X ≤ (CVL imax)(A + i ) (A + i )T b i + + (1 − CVL imax)(A i )(A i )T b i .□

Proposition 2

For any i ∈ {1, 2, …, t}, assume XR s and CVL imax1 and CVL imax2 are any two values of CVL imax. If CVL imax1 < CVL imax2 and A i (CVL imax1)Xb i (CVL imax1), then A i (CVL imax2)Xb i (CVL imax2).

Proof

Let X be any vector in {X | XR s; A i (CVL imax1)Xb i (CVL imax1)}. Then X satisfies XR s and A i (CVL imax1)Xb i (CVL imax1). From Theorem 1, we have inequality A i (CVL imax1)Xb i (CVL imax1) is equivalent with [(A + i Xb i )/((A + i )(A + i )T)]/{[(A + i Xb i )/((A + i )(A + i )T)] + [(b + i A i X)/((A i )(A i )T)]} ≤ CVL imax1. Since CVL imax1 < CVL imax2, so [(A + i Xb i )/((A + i )(A + i )T)]/{[(A + i Xb i )/((A + i )(A + i )T)] + [(b + i A i X)/((A i )(A i )T)]} < CVL imax2. Namely, X belongs to {X | XR s and A i (CVL imax2)Xb i (CVL imax2)}. No element in {X | XR s and A i (CVL imax1)Xb i (CVL imax1)} can satisfy A i (CVL imax2)X = b i (CVL imax2), because CVL imax1 < CVL imax2. Therefore, {X | XR s and A i (CVL imax1)Xb i (CVL imax1)} absolutely belongs to {X | XR s and A i (CVL imax2)Xb i (CVL imax2)}.□

Remark 1

For any CVL imax ∈ [0, 1] and any i ∈ {1, 2, …, t}, L ij (CVL imax) ∈ [a ij , a + ij ] and R i (CVL imax) ∈ [b i , b + i ] where L ij (CVL imax) = [(1 − CVL imaxa + ij ·(A i )(A i )T + (CVL imaxa ij ·(A + i )(A i +)T]/[(1 − CVL imax)·(A i )(A i )T + (CVL imax)·(A + i )(A i +)T] and R i (CVL imax) = [(CVL imaxb + i ·(A + i )(A i +)T + (1 − CVL imaxb i ·(A i )(A i )T]/[(1 − CVL imax)·(A i )(A i )T + (CVL imax)·(A + i )(A i +)T].

Proof

Based on formulations of L ij (CVL imax) and R i (CVL imax), it is equivalent to prove [(1 − CVL imaxa + ij ·(A i )(A i )T + (CVL imaxa ij ·(A + i )(A i +)T] ≥ [(1 − CVL imax)·(A i )(A i )T + (CVL imax)·(A + i ) (A i +)Ta ij , [(1 − CVL imaxa + ij ·(A i )(A i )T + (CVL imaxa ij ·(A + i )(A i +)T] ≤ [(1 − CVL imax)·(A i )(A i )T + (CVL imax)·(A + i ) (A i +)Ta + ij , [(CVL imaxb + i ·(A i +)(A i +)T + (1 − CVL imaxb i ·(A i )(A i )T] ≥ [(1 − CVL imax)·(A i )(A i )T + (CVL imax)·(A + i )(A i +)Tb i , and [(CVL imaxb + i ·(A i +)(A i +)T + (1 − CVL imaxb i ·(A i ) (A i )T] ≤ [(1 − CVL imax)·(A i )(A i )T + (CVL imax)·(A + i )(A i +)Tb i +. Namely, [(1 − CVL imaxa + ij ·(A i )(A i )T] ≥ [(1 − CVL imax)·(A i )(A i )Ta ij , [(CVL imaxa ij ·(A + i )(A i +)T] ≤ [(CVL imax)·(A + i )(A i +)Ta + ij , [(CVL imaxb + i ·(A i +)(A i +)T] ≥ [(CVL imax)·(A + i )(A i +)Tb i , and [(1 − CVL imaxb i ·(A i )(A i )T] ≤ [(1 − CVL imax)·(A i )(A i )Tb + i . These inequalities hold because, for any i ∈ {1, 2, …, t} and any j ∈ {1, 2, …, n}, we have 1 − CVL imax ≥ 0, CVL imax ≥ 0, (A i )(A i )T ≥ 0, (A + i )(A i +)T ≥ 0, a + ij a ij and b + i b i .□

Theorem 2

DCVL(CVL imax) < DCVL(CVL imax) if CVL imax1 < CVL imax2 where CVL imax1 and CVL imax2 are two levels of CVL imax.

Proof

Due to the formulation of DCVL(CVL imax), it is sufficient to prove that both F ij (L ij (CVL imax)) and G i (R i (CVL imax)) are monotonically decreasing with CVL imax for any i ∈ {1, 2, …, t} and j ∈ {1, 2, …, n}. It is equivalent to prove that a) L ij (CVL imax1) ≥ L ij (CVL imax2) and b) R i (CVL imax1) ≤ R i (CVL imax2), since both F ij (·) and G i (·) are monotonically increasing functions.

(a). Since CVL imax1CVL imax2 and a ij a + ij , we have (CVL imax1CVL imax2)·(a ij a + ij ) ≥ 0. Because (A + i )(A i +)T·(A i )(A i )T > 0, we have (CVL imax1)·(1 − CVL imax2a ij + (1 − CVL imax1)·(CVL imax2a + ij ≥ (CVL imax2)·(1 − CVL imax1a ij + (1 − CVL imax2)·(CVL imax1a + ij . Equivalently, we have (1 − CVL imax1)·(1 − CVL imax2a + ij ·(A i )(A i )T·(A i )(A i )T + [(CVL imax1)·(1 − CVL imax2a ij + (1 − CVL imax1)·(CVL imax2a + ij ]·(A + i ) (A i +)T·(A i )(A i )T + (CVL imax1)·(CVL imax2a ij ·(A + i )(A i +)T·(A i +)(A i +)T ≥ (1 − CVL imax1)·(1 − CVL imax2a + ij ·(A i )(A i )T·(A i )(A i )T + [(1 − CVL imax1)·(CVL imax2a ij + (CVL imax1)·(1 − CVL imax2a + ij ]·(A + i ) (A i +)T·(A i )(A i )T + (CVL imax1)·(CVL imax2a ij ·(A + i )(A i +)T·(A i +)(A i +)T, and furthermore (1 − CVL imax1a + ij · (A i )(A i )T·(1 − CVL imax2)·(A i )(A i )T + (CVL imax1a ij ·(A + i )(A i +)T·(1 − CVL imax2)·(A i )(A i )T + (1 − CVL imax1a + ij ·(A i )(A i )T·(CVL imax2)·(A + i )(A + i )T + (CVL imax1a ij ·(A + i ) (A i +)T·(CVL imax2)·(A + i )(A i +)T ≥ (1 − CVL imax2a + ij ·(A i )(A i )T·(1 − CVL imax1)·(A i )(A i )T + (CVL imax2a ij ·(A + i )(A i +)T·(1 − CVL imax1)·(A i ) (A i )T + (1 − CVL imax2a + ij ·(A i )(A i )T·(CVL imax1)·(A + i ) (A i +)T + (CVL imax2a ij ·(A + i )(A i +)T·(CVL imax1)·(A + i ) (A i +)T. Since [(1 − CVL imax)·(A i )(A i )T + (CVL imax)·(A + i )(A i +)T] ≥ 0 for any CVL imax ∈ [0, 1] and any i ∈ {1, 2, …, t}, we have [(1 − CVL imax1a + ij ·(A i )(A i )T + (CVL imax1a ij ·(A + i )(A i +)T]·[(1 − CVL imax2)·(A i ) (A i )T + (CVL imax2)·(A + i ) (A i +)T] ≥ [(1 − CVL imax2a + ij ·(A i )(A i )T + (CVL imax2a ij ·(A + i )(A i +)T]·[(1 − CVL imax1)·(A i )(A i )T + (CVL imax1)·(A + i )(A i +)T]. Thus, [(1 − CVL imax1a + ij ·(A i )(A i )T + (CVL imax1a ij ·(A + i ) (A i +)T]/[(1 − CVL imax1)·(A i )(A i )T + (CVL imax1)·(A + i )(A i +)T] ≥ [(1 − CVL imax2a + ij ·(A i )(A i )T + (CVL imax2a ij ·(A + i ) (A i +)T]/[(1 − CVL imax2)·(A i )(A i )T + (CVL imax2)·(A + i )(A i +)T]. It is equivalent to L ij (CVL imax1) ≥ L ij (CVL imax2) from the formulation of L ij (CVL imax).□

(b). From the formulation of R i (CVL imax), we are going to prove [(CVL imax1b + i ·(A + i )(A i +)T + (1 − CVL imax1b i ·(A i )(A i )T]/[(1 − CVL imax1)·(A i )(A i )T + (CVL imax1)·(A + i )(A i +)T] ≤ [(CVL imax2b + i ·(A i +) (A i +)T + (1 − CVL imax2b i ·(A i )(A i )T]/[(1 − CVL imax2)·(A i )(A i )T + (CVL imax2)·(A + i )(A i +)T]. That is, [(CVL imax1b + i ·(A i +)(A i +)T + (1 − CVL imax1b i ·(A i )(A i )T]·[(1 − CVL imax2)·(A i )(A i )T + (CVL imax2)·(A + i ) (A + i )T] ≤ [(CVL imax2b + i ·(A i +)(A i +)T + (1 − CVL imax2b i ·(A i )(A i )T]·[(1 − CVL imax1)·(A i )(A i )T + (CVL imax1)·(A + i )(A + i )T], or (CVL imax1b + i ·(A i +)(A i +)T·(1 − CVL imax2)·(A i )(A i )T + (1 − CVL imax1b i ·(A i ) (A i )T·(1 − CVL imax2)·(A i )(A i )T + (CVL imax1b + i ·(A i +)(A i +)T·(CVL imax2)·(A + i )(A i +)T + (1 − CVL imax1b i ·(A i ) (A i )T·(CVL imax2)·(A + i )(A i +)T ≤ [(CVL imax2b + i ·(A i +)(A i +)T·(1 − CVL imax1)·(A i )(A i )T + (1 − CVL imax2b i ·(A i )(A i )T·(1 − CVL imax1)·(A i )(A i )T + (CVL imax2b + i ·(A + i )(A i +)T·(CVL imax1)·(A + i ) (A i +)T + (1 − CVL imax2b i ·(A i )(A i )T·(CVL imax1)·(A + i )(A + i )T. It is equivalent to [(CVL imax1)·(1 − CVL imax2b + i + (1 − CVL imax1b i ·(CVL imax2)]·(A + i )(A + i )T·(A i )(A i )T + (1 − CVL imax1)·(1 − CVL imax2b i ·(A i )(A i )T·(A i )(A i )T + (CVL imax1)·(CVL imax2b + i ·(A + i )(A + i )T·(A + i )(A + i )T ≤ [(1 − CVL imax1)·(CVL imax2b + i + (CVL imax1)·(1 − CVL imax2b i ]·(A + i )(A i +)T·(A i )(A i )T + (1 − CVL imax1)·(1 − CVL imax2b i ·(A i )(A i )T·(A i )(A i )T + (CVL imax1)·(CVL imax2b + i ·(A + i )(A i +)T·(A + i )(A i +)T. Since CVL imax1CVL imax2 and b i b + i , we have [(CVL imax1)·(1 − CVL imax2b + i + (1 − CVL imax1b i ·(CVL imax2)] − [(1 − CVL imax1)·(CVL imax2b + i + (CVL imax1)·(1 − CVL imax2b i ] = (CVL imax1CVL imax2)·(b + i b i ) and (CVL imax1CVL imax2)·(b + i b i ) ≤ 0. At the meantime, (A + i )(A + i )T·(A i )(A i )T ≥ 0. Thus, we have R i (CVL imax1) ≤ R i (CVL imax2).□

Theorem 3

If the necessarily optimal solution exists for SILP-2 model (3), the integrally optimal solution equals to the necessarily optimal solution.

Proof

Let X opt = (x 1opt, x 2opt, …, x nopt) be the integrally optimal solution of model (3). From Definition 6, we have \(\int \ldots \int \left\{ {\sum\nolimits_{j = 1}^{n} {\left[ {\left[ {g_{j} \left( {d_{1} ,d_{2} , \ldots ,d_{r} } \right) \, + h_{j} } \right]x_{j} } \right]} } \right\}d\left( {d_{1} } \right) \ldots d\left( {d_{r} } \right)\) is maximized when X = X opt. Namely, there does not exist another feasible solution X  = (x 1 , x 2 , …, x n ) such that \(\int \ldots \int \left\{ {\sum\nolimits_{j = 1}^{n} {\left[ {\left[ {g_{j} \left( {d_{1} ,d_{2} , \ldots ,d_{r} } \right) \, + h_{j} } \right]x_{j}^{\prime } } \right]} } \right\}d\left( {d_{1} } \right) \ldots d\left( {d_{r} } \right) \, \quad > \, \int \ldots \int \left\{ {\sum\nolimits_{j = 1}^{n} {\left[ {\left[ {g_{j} \left( {d_{1} ,d_{2} , \ldots ,d_{r} } \right) \, + h_{j} } \right]x_{{j{\text{opt}}}} } \right]} } \right\}d\left( {d_{1} } \right) \ldots d\left( {d_{r} } \right)\). Assume X opt is not the necessarily optimal solution that exists for SILP-2 model (3). From the definition of necessarily optimal solution, there must exist another vector of feasible solutions, assumed as X  = (x 1 , x 2 , …, x n ), such that \(\sum\nolimits_{j = 1}^{n} {\left[ {\left[ {g_{j} \left( {d_{1} ,d_{2} , \ldots ,d_{r} } \right) \, + h_{j} } \right]x_{j}^{\prime \prime } } \right]} \, \ge \, \sum\nolimits_{j = 1}^{n} {\left[ {\left[ {g_{j} \left( {d_{1} ,d_{2} , \ldots ,d_{r} } \right) \, + h_{j} } \right]x_{{j{\text{opt}}}} } \right]}\) for all combinations of d k ∈ [d k , d + k ] (k = 1, 2, …, r) and \(\sum\nolimits_{j = 1}^{n} {\left[ {\left[ {g_{j} \left( {d_{1} ,d_{2} , \ldots ,d_{r} } \right) \, + h_{j} } \right]x_{j}^{\prime \prime } } \right]} > \sum\nolimits_{j = 1}^{n} {\left[ {\left[ {g_{j} \left( {d_{1} ,d_{2} , \ldots ,d_{r} } \right) \, + h_{j} } \right]x_{{j{\text{opt}}}} } \right]}\) for at least one combination of d k ∈ [d k , d + k ] (k = 1, 2, …, r). Thus, we have \(\int \ldots \int \left\{ {\sum\nolimits_{j = 1}^{n} {\left[ {\left[ {g_{j} \left( {d_{1} ,d_{2} , \ldots ,d_{r} } \right) \, + h_{j} } \right]x_{j}^{\prime \prime } } \right]} } \right\}d\left( {d_{1} } \right) \ldots d\left( {d_{r} } \right) > \int \ldots \int \left\{ {\sum\nolimits_{j = 1}^{n} {\left[ {\left[ {g_{j} \left( {d_{1} ,d_{2} , \ldots ,d_{r} } \right) \, + h_{j} } \right]x_{{j{\text{opt}}}} } \right]} } \right\}d\left( {d_{1} } \right) \ldots d\left( {d_{r} } \right)\). This is contradictory to the maximization of \(\int \ldots \int \left\{ {\sum\nolimits_{j = 1}^{n} {\left[ {\left[ {g_{j} \left( {d_{1} ,d_{2} , \ldots ,d_{r} } \right) \, + h_{j} } \right]x_{{j{\text{opt}}}} } \right]} } \right\}d\left( {d_{1} } \right) \ldots d\left( {d_{r} } \right)\). Therefore, the integrally optimal solution is also the necessarily optimal solution.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Huang, G., Dong, C. et al. Resources and environmental systems management under synchronic interval uncertainties. Stoch Environ Res Risk Assess 32, 435–456 (2018). https://doi.org/10.1007/s00477-017-1445-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1445-5

Keywords

Navigation